向量在线性方程组解集上的投影

线性代数补充:向量在线性方程组解集上的投影

A ∈ R m × n , b ∈ R m , x ∈ R n A\in \mathbb{R}^{m\times n},b\in \mathbb{R}^m, x\in\mathbb{R}^n ARm×n,bRm,xRn,考虑线性方程组 A x = b Ax = b Ax=b。将 A A A写成行分块的形式
A = [ a 1 T a 2 T ⋯ a m T ] A = \begin{bmatrix} a_1^T \\ a_2^T \\ \cdots \\ a_m^T \end{bmatrix} A=a1Ta2TamT
则有 a i T x = b i ( i = 1 , 2 , ⋯   , m ) a_i^T x = b_i(i = 1,2,\cdots,m) aiTx=bi(i=1,2,,m)。假设 A A A行满秩,该方程组定义了 m m m个超平面的交集。向量 v ∈ R n v\in\mathbb{R}^n vRn在这个解集上的投影为
argmin x 1 2 ∣ ∣ x − v ∣ ∣ 2 2 s.t. A x = b \text{argmin}_x \frac 12 ||x - v||_2^2 \\ \text{s.t.}Ax = b argminx21xv22s.t.Ax=b
u = x − v u = x - v u=xv,问题变为
argmin x ∣ ∣ u ∣ ∣ 2 , s.t. A u = b − A v \text{argmin}_x ||u||_2,\text{s.t.}Au = b - Av argminxu2,s.t.Au=bAv
u u u A A A的零空间正交时,对 A A A的零空间的任意向量 w w w,有
∣ ∣ u + w ∣ ∣ 2 2 = ∣ ∣ u ∣ ∣ 2 2 + ∣ ∣ w ∣ ∣ 2 2 A ( u + w ) = b − A v ||u+w||^2_2 = ||u||_2^2 + ||w||_2^2\\ A(u + w) = b - Av u+w22=u22+w22A(u+w)=bAv
因此 ∣ ∣ u ∣ ∣ 2 ||u||_2 u2最小。此时 u u u落在 A A A的行空间内。设 u = A T w u = A^Tw u=ATw,代入知
w = ( A A T ) − 1 ( b − A v ) u = A T ( A A T ) − 1 ( b − A v ) w = (AA^T)^{-1}(b - Av) \\ u = A^T(AA^T)^{-1}(b - Av) \\ w=(AAT)1(bAv)u=AT(AAT)1(bAv)
因此
Proj A x = b ( v ) = v + A T ( A A T ) − 1 ( b − A v ) \text{Proj}_{Ax = b} (v) = v + A^T(AA^T)^{-1}(b - Av) ProjAx=b(v)=v+AT(AAT)1(bAv)
特别地,当 b = 0 b = 0 b=0,即向量 v v v A A A的零解空间上的投影为
Proj A x = 0 ( v ) = v − A T ( A A T ) − 1 A v \text{Proj}_{Ax = 0} (v) = v - A^T(AA^T)^{-1}Av ProjAx=0(v)=vAT(AAT)1Av
注意这个解与最小二乘的不同。最小二乘解决的问题是
argmin x 1 2 ∣ ∣ x − v ∣ ∣ 2 s.t. x = A u \text{argmin}_x \frac 12||x - v||^2 \\ \text{s.t.} x = Au argminx21xv2s.t.x=Au
也就是向量 v v v A A A的列空间的投影。最小二乘解为
x = A ( A T A ) − 1 A T v x = A(A^TA)^{-1}A^Tv x=A(ATA)1ATv
一个和 A A A的左逆相关,一个和 A A A的右逆相关。更一般地说,最小范数解是 A A A行满秩时的最优解,最小二乘解是 A A A列满秩时的最优解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值