线性代数笔记3:向量投影

本文探讨了线性代数中的向量投影,包括在直线和平面上的投影,以及如何找到投影矩阵。当计算线性方程组Ax=b有解时,投影在C(AT)中有唯一解;无解时,寻找C(A)上距b最近的点,即最小化||Ax^−b||。投影矩阵P通过A(ATA)^{-1}AT计算,满足P^2=P, PT=P的性质。" 79377406,1326591,Android 权限申请与兼容处理详解,"['Android开发', '权限管理', 'Android API', '用户权限', '相机权限']
摘要由CSDN通过智能技术生成


向量投影是线性代数中很重要的应用,用于找到向量到目标投影空间的投影向量。这是下一节线性回归的基础。

Ax=b A x = b 有解时

当计算线性方程组 Ax=b A x = b 有解时, b b 就在 C ( A ) 的子空间中,则 Ax=b A x = b C(AT) C ( A T ) 中有唯一解。我们考虑 x x 的投影。
α R n Ax=b A x = b 的解,则 α=αr+αnαrC(AT)αnN(A) α = α r + α n , α r ∈ C ( A T ) , α n ∈ N ( A ) 。则:

αrαC(AT) α r 是 α 在 C ( A T ) 的 投 影 。

αnαN(A) α n 是 α 在 N ( A ) 的 投 影 。

Ax=b A x = b 无解时

当计算线性方程组 Ax=b A x = b 时, 它可能是无解的,此时我们可以考虑求 x^Rn x ^ ∈ R n ,使得|| Ax^b A x ^ − b || 最小或极小?这就意味着当 bC(A) b ∉ C ( A ) 时,我们需要求解 C(A) C ( A ) 上距离 b b 最近的点 A x ^ , 它就是 b b C ( A ) 上的投影点。这对于我们理解最小二乘法很有帮助,具体请参考下一章。

以三维空间为例,目标投影空间可能是线,也可能是面。投影的实质就是找一个函数,从而使得 P(B)=b P ( B ) = b ,也就找到了 B B 在某一维度的映射。类似的,在线性代数中,我们需要找到投影矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值