概念引入
LIS(最长上升子序列):对于某个长为n的数列a0, a1, …, a(n-1),其上升子序列指的是对于任意的i<j都满足ai<aj的子序列。最长上升子序列即为这些子序列里最长的那个。
LCS(最长公共子序列):对于两个数列s1,s2,s1和s2的相同子序列,且该子序列的长度最长,即是LCS。
子序列是什么?如下图:
题目描述
给出两个序列A,B,要求得出A的LIS的长度与AB的LCS的长度。
输入格式
第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B
输出格式
输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度
输入样例
5 5
1 3 2 5 4
2 4 3 1 5
输出样例
3 2
解题思路
使用动态规划的思维
对于LIS:
- 构造数组dp[]用来储存序列A里每个数对应的最长上升子序列的长度,dp[]全部初始化为1。
- 遍历整个序列,对于每次遍历到的数A[i],遍历在其之前的所有的数A[j]和其dp[j]:如果A[i]比A[j]要大(即满足上升)且dp[i]小于等于dp[j],就用dp[j]+1更新dp[i]。
对于LCS:
- 构造二维数组f[][]用于储存结果,初始化f[1][0] = f[0][1] = f[0][0] = 0
- 对于每个f[i][j],观察此时的A[i]与B[j]的值,如果相同,说明满足“公共”这个条件,那么f[i][j]即为f[i-1][j-1]+1
- 如果不相同,那么说明对于当前的A[i]或者B[j]是不能被同时选择的,那么此时的f[i][j]即为f[i][j-1]和f[i-1][j]里较大的那个。
代码:
#include <iostream>
#include <algorithm>
const int N = 5005;
using namespace std;
int A[N], B[N];
int n, m;
int dp[N];//LIS
int f[N][N];//LCS
int LIS()
{
int ans = 0;
dp[1] = 1;
for (int i = 2; i <= n; i++)
{
dp[i] = 1;
for (int j = i - 1; j > 0; j--)
{
if (A[i] > A[j] && dp[i] <= dp[j])
{
dp[i] = dp[j] + 1;
}
}
}
for (int i = 1; i <= n; i++)
{
if (dp[i] > ans)
{
ans = dp[i];
}
}
return ans;
}
int LCS()
{
f[1][0] = f[0][1] = f[0][0] = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
if (A[i] == B[j])
{
f[i][j] = f[i - 1][j - 1] + 1;
}
else
{
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
}
}
}
return f[n][m];
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
cin >> A[i];
for (int i = 1; i <= m; i++)
cin >> B[i];
cout << LIS() << ' ' << LCS() << endl;
}