人工智能
文章平均质量分 67
月光下的小白兔✘
在水一方
展开
-
windows cuda11.x cudnn8.x TensorRT8.x 环境配置
win10 CUDA11 cudnn TensorRT开发环境的搭建与测试cuda,cudnn和tensorrt安装cuda下载地址:https://developer.nvidia.com/cuda-toolkit-archivecudnn下载地址:https://developer.nvidia.com/rdp/cudnn-archivetensorrt下载地址:https://developer.nvidia.com/nvidia-tensorrt-8x-download请注意cudn原创 2022-05-27 20:48:58 · 4211 阅读 · 3 评论 -
ubuntu 编译安装支持CUDA的OpenCV
cuda和cudnn的安装过于简单这里就不过多解释。一、安装opencv依赖包sudo apt-get updatesudo apt-get upgradesudo apt install cmake pkg-config unzip yasm git checkinstall libjpeg-dev libpng-dev libtiff-dev libavcodec-dev libavformat-dev libswscale-dev libavresample-dev libgstreamer1原创 2022-04-12 12:51:00 · 10008 阅读 · 44 评论 -
yolov5_dnn python/c++用opencv的dnn模块做yolov5目标检测
opencv dnn模块调用yolov5-onnx权重文件做检测非常简单的yolov5应用,不需要pytorch环境库,只需要opencv库即可,可以很简单很轻松的部署!!!项目中自带yolov5n.onnx,如果需要yolov5其他模型onnx权重文件,可以从我的百度网盘提取。提取码: 1cj3本项目支持对图片和视频进行检测,也支持摄像头实时检测。有问题请及时留言,如果帮助到了你,请在github留下star!github地址,yolov5_onnx_dnn...原创 2022-03-22 21:28:15 · 8002 阅读 · 17 评论 -
Win10配置SlowFast全过程并使用slowfast进行视频行为识别检测
Windows10配置SlowFast环境全过程 并使用自己的视频进行demo检测环境简介开始配置配置demo环境结果环境简介pycharmpython=3.7.11我就是不用linux,就要用window10配置。你还需要安装git,下下来以后一直下一步即可。可能还需要Visual Studio。开始配置首先下载官网的代码库git clone https://github.com/facebookresearch/slowfastcd SlowFast然后新建一个虚拟环境。然后原创 2022-03-21 12:20:53 · 5494 阅读 · 35 评论 -
使用yolov5训练自己数据集并通过flask部署yolov5
使用yolov5训练自己数据集的详细过程1.准备数据集yolo标签文件的格式如下:102 0.682813 0.415278 0.237500 0.502778102 0.914844 0.396528 0.168750 0.451389第一位为 class,为图片中物体的类别后面四位为图片中物体的位置,(xcenter, ycenter, h, w)即目标物体中心位置的相对坐标和相对高宽图中存在两个目标如果你已经拥有如上的label文件,可直接跳到下一步。没有如上标签文件,可使用 l原创 2021-10-23 18:39:44 · 8010 阅读 · 4 评论 -
pytorch中Convolutional Neural Networks的真正计算过程与理解
关于Convolutional Neural Networks的真正理解一般Convolutional Neural Networks包含卷积层,BN层,激活层以及池化层。池化层较为简单,不再赘述。借此机会详细的介绍其他三层是如何实现的,以及如何自定义卷积层参数。Convolution layer网上写卷积的博客不计其数,大都是长篇大论,其实卷积十分简单,见下图。上图所示输入为 【5,5 ,1】 的图像,卷积核大小为 3 * 3,步长为1 【一步一步走】,padding=0【如果为1会在图像外面补原创 2021-09-30 22:03:49 · 502 阅读 · 0 评论 -
pytorch中交叉熵损失nn.CrossEntropyLoss()的真正计算过程
关于nn.Cross Entropy Loss的真正理解对于多分类损失函数Cross Entropy Loss,就不过多的解释,网上的博客不计其数。在这里,讲讲对于CE Loss的一些真正的理解。首先大部分博客给出的公式如下:其中p为真是标签值,q为预测值。在低维复现此公式,结果如下。在此强调一点,pytorch中CE Loss并不会将输入的target映射为one-hot编码格式,而是直接取下标进行计算。import torchimport torch.nn as nnimport mat原创 2021-09-30 09:48:58 · 5815 阅读 · 5 评论 -
阿里云ECS部署python,flask项目,简单易懂,无需nginx和uwsgi
配置使用的是阿里云的学生机简要说明一下针对本文的环境情况:系统:Ubuntu20.04 Server(自带python3.8)进入阿里云服务器页面进入管理台,重置密码,方便登录加入安全组我的安全组配置这里表示端口开放接下来,cdm进入命令行 ssh root@ip地址 进入你的服务器然后执行所有升级sudo apt updatesudo apt upgrade -ypip换源(注意是pip3!!!!!)sudo pip3 config set global.inde.原创 2021-01-15 16:41:17 · 6835 阅读 · 22 评论 -
基于yolov3-deepsort-flask的目标检测和多目标追踪web平台
目标检测和多目标追踪平台简介项目地址简介与yolov3、deep-sort和flash相结合,是一个可以在网页上运行的目标检测和多目标跟踪平台。你可以上传图片或视频。上传图像时,进行目标检测。上传视频时,进行多目标跟踪(默认为行人,可更改为其他对象)。移动终端提供在线拍摄接口,用于实时目标检测和多目标跟踪。项目地址项目已经开源。是兄弟就来star我。Transformer-man/yolo-deepsort-flask...原创 2021-05-01 09:14:50 · 5003 阅读 · 13 评论