- 博客(12)
- 收藏
- 关注
原创 C++程序的结构
除了按数据类型区分变量外,根据变量定义的位置,可以把变量分成全局变量(global variable)与局部变量(local variable)。全局变量是指定义在函数体外部的变量,它能被所有函数使用。局部变量是指定义在函数或复合语句中定义的变量,只能在函数或复合语句中使用其中g为全局变量,sum()中下,x,y为全局变量,main()中的x,y为局部变量。
2024-06-16 19:28:56 1013
原创 类与对象的建立和使用
类的数据成员除了可以使用前面讲述的C++类型外,还可以使用已定义完整的 类类型。: 为节省内存,编译器在创建对象时,只为各对象分配用于保存各对象数据成员初始化的值,并不为各对象的成员函数分配单独的内存空间,而是共享类的成员函数定义,即类中成员函数的定义为该类的所有对象所共享,这是C++编译器创建对象的一种方法,在实际应用中,我们仍要将对象理解为由数据成员和函数成员两部分组成。类是一组数据成员和函数成员的集合,类作用域作用于类中定义的特定的成员,包括数据成员与成员函数,类内的每一个成员都具有类作用域。
2024-06-16 18:52:05 674
原创 图像与Mat
在opencv的Mat.depth()中得到的是一个0 – 6的数字,分别代表不同的位数:enum { CV_8U=0, CV_8S=1, CV_16U=2, CV_16S=3, CV_32S=4, CV_32F=5, CV_64F=6 },可见 0和1都代表8位, 2和3都代表16位,4和5代表32位,6代表64位。方法六: 使用大小、类型、Scalar向量三个参数的构造函数创建Mat对象 Mat m = Mat(Size(4, 4), CV_8UC3, Scalar(255, 0, 0));
2024-06-14 19:51:43 805
原创 yolov1总结
上面提到7x7的每个网格都要预测两个bounding box的坐标和置信度,如下图,以红色网格为例,生成两个大小形状不同的蓝色box,box的位置坐标为(x,y,w,h),其中x和y表示box中心点与该格子边界的相对值,也就是说x和y的大小被限制在[0,1]之间,假如候选框的中心刚好与网格的中心重合,那么x=0.5,y=0.5。w和h表示预测box的宽度和高度相对于整幅图片的宽度和高度的比例,比如图中的框住狗的蓝色网格的宽度w大致为1/3,高度h大致为1/2。这里面的置信度跟前面学的置信度有一些些不同。
2024-06-14 19:16:34 912
原创 深度学习--迁移学习
域(Domain):数据特征和特征分布组成,是学习的主体源域 (Source domain):已有知识的域目标域 (Target domain):要进行学习的域任务 (Task):由目标函数和学习结果组成,是学习的结果。
2024-06-07 19:49:40 782
原创 lent-5 vgg16网络结构总结
两个GPU上各有一个,然后第二个卷积层,他是在每个GPU把当前的那个卷积层结果拿出来,就是说gpu0的卷积层,第二个卷积层读的是GPU0的第一个卷积上输出,直接进来OK,中间是没有任何通讯的,然后这有个奇怪的设定,到第三个的时候,GPU还是每个GPU上有自己的卷积核,但是呢,他每个人会去看别人,他会把第二个卷积层的输出在GPU0上GPU1的都拿到(在输出通道维度合并)然后再。由于S4层的16个图的大小为5*5,与卷积核的大小相同,所以卷积后形成的图的大小为1*1。每个都与上一层的16个图相连。
2024-06-07 19:26:14 955
原创 创建http网页前端所必须的知识点
值1=四个方向值一样 值1 上下边距(20px) 值2 左右(15px) 值1 上 值2 左右 值3 下值1 上 值2 右 值3 下。padding-方向词(内边距):top(上) bottom(下) left(左) right(右) 值不能为负值。font-weight是定义文本字体粗细的css属性bold加粗600以下细 600以上粗 (100-900)E:nth-last-child(n){css样式}匹配父元素的倒数第N个元素E。
2024-06-07 19:08:02 659
原创 人工智能发展史
20世纪70年代初,人工智能遭遇了瓶颈。图灵机是图灵在1936年提出的一种理论机器,它是一种假想的计算机,具有一个无限长度的纸带,上面可以存储无限的数据,还有一个读写头,能够在纸带上读取和写入数据。达特茅斯会议上,科学家们探讨用机器模拟人类智能等问题,并首次提出了人工智能(AI)的术语,AI的名称和任务得以确定,同时出现了最初的成就和最早的一批研究者。2011年,Watson(沃森)作为IBM公司开发的使用自然语言回答问题的人工智能程序参加美国智力问答节目,打败两位人类冠军,赢得了100万美元的奖金。
2024-06-05 19:53:13 1355
原创 pycharm专业版安装与连接
6.选择左上角的+添加配置信息(Create New Server处可以随便取一下服务器名字)类型选择SFTP,下方填写Host:服务器的IP地址;port端口默认22。填好之后Test Connection测试连接情况,连接成功后选择下面的Apply。5.工具-部署-配置(Tools->Deployment->Configuration)先点击资源包里的安装,安完之后重启电脑,再填写激活码,这样就是永久的。11.同步文件,修改本地文件,同步服务器文件也进行修改。3.选择你安装的位置,建议安到d盘。
2024-06-05 18:58:51 216
原创 yolov5-resnet训练问题解决
1.首先安装torch、torchvision、progress、matplotlib。3.出现下面爆红,torchvision版本不匹配,升级torchvision版本。5.将view改为reshape,继续训练TRAINING.md。6.出现以下报错,将.data[0],[0]改为.item()2.将cifar.py下的240行的asyncTrue删除。5.如果没有安装cuda,就会报下面这个。7.最后再运行TRAINING.md。4.训练TRAINING.MD。点击链接,将cuda改为cpu。
2024-06-04 18:40:07 313
原创 resnet基础知识
ResNet的基本构建模块是残差块,每个残差块通常由多个卷积层、批归一化(batch normalization)和激活函数(如ReLU)组成。在残差块中,输入信号会通过“跳跃连接”(skip connection)与卷积层的输出相加,形成一个残差。这种设计允许信息更流畅地在深层网络中传递,从而可以训练出数百甚至上千层的模型。
2024-06-04 11:26:02 1032 1
原创 卷积维度的解释
在 PyTorch 中进行卷积操作时,输入图像的维度必须是四维的(batch size, channels, height, width)。
2024-06-04 11:02:14 512
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人