一、题目描述
样例1输入
6
0 0
1 0
1 1
3 1
5 1
7 1
样例1输出
3
样例1解释
按照规则一,最佳阈值的选取范围为0,1,3,5,7。
当阈值为0时,预测正确次数为4;
当阈值为1时,预测正确次数为5;
当阈值为3时,预测正确次数为5;
当阈值为5时,预测正确次数为4;
当阈值为7时,预测正确次数为3。
阈值选取为1或 3时,预测准确率最高;
所以按照规则二,最佳阈值的选取范围缩小为1或3。
依规则三,最佳阈值为3.
样例2输入
8
5 1
5 0
5 0
2 1
3 0
4 0
100000000 1
1 0
样例2输出
100000000
二、代码实现
#include<iostream>
#include<algorithm>
using namespace std;
struct Student{
int y;
int result;
};
bool cmp(Student s1,Student s2)
{
return s1.y < s2.y;
}
int main()
{
Student student[100005];
int count_0[100005]={0};
int count_1[100005]={0};
//输入数据,存到结构体数组中
int m;
cin>>m;
for(int i=0;i<m;i++)
{
cin>>student[i].y>>student[i].result;
}
//排序,由y值从小到大
sort(student,student+m,cmp);
//统计小于每个student[i].y的0的个数,也就是预测结果和实际结果都为0的个数
int i = 0 , j = 1;
int coing_0 = 0 , coing_1 = 0;
while(j<m)
{
if(student[j].y==student[i].y)
{
//避免漏掉相同y值的计数情况
j++;
continue;
}
//从i到j统计累计的0的个数,并加上之前已有的0的个数(temp)
int temp = 0;
while(i<j)
{
if(student[i].result==0) temp++;
count_0[i] = coing_0;
i++;
}
coing_0 += temp;
}
//统计最后几个,避免j达到m之后而漏掉了最后几个数据
while(i<j)
{
count_0[i] = coing_0;
i++;
}
//统计大于等于每个student[i].y的1的个数,也就是预测结果和实际结果都为1的个数
for(int i=m-1;i>=0;i--)
{
if(student[i].result==1) coing_1++;
count_1[i] = coing_1;
}
//输出最大阈值
int ans = student[0].y;
int num = count_0[0] + count_1[0];
for(int i=1;i<m;i++)
{
if(count_0[i] + count_1[i] >= num)
{
num = count_0[i] + count_1[i];
ans = student[i].y;
}
}
cout<<ans<<endl;
return 0;
}
更多CCFCSP认证真题详解,请点击>>CCFCSP历年认证考试真题解答汇总