图的定义:图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是
图G中边的集合。
- 线性表中我们把数据元素叫元素,书中将数据元素叫结点,在图中,数据元素我们则称之为顶点;
- 线性表中可以没有数据元素,称为空表;树中可以没有结点,叫做空树;但是,在图结构中,不允许没有顶点,在定义中,若V是顶点的集合,则强调了顶点集合V有穷非空;
- 线性表中,相邻的数据元素之间具有线性关系,树结构中,相邻两层的结点具有层次关系,而图中,任意两个顶点之间都可能有关系,顶点之间的逻辑关系用边来表示,边集可以是空的
各种图的定义:
- 无向边:若顶点Vi到Vj之间的边没有方向,则称这条边为无向边,用无序偶对(Vi,Vj)来表示;如果图中任意两点之间的边都是无向边,则称该图为无向图,由于无向图是无方向的,因而连接顶点的边可以写成(Vi,Vj)或(Vj,Vi)。
- 有向边:若顶点Vi到Vj之间的边有方向,则称这条边为有向边,也成为弧,用有序偶对(Vi,Vj)来表示,Vi称为弧尾(tail),Vj称为弧头(head);如果图中任意两点之间的边都是有向边,则称该图为有向图。
- 无向边用“()”表示,而有向边则是用“<>”表示;
- 在图中,若不存在顶点到其自身的边,且同一条边不重复出现,则称这样的图为简单图;
- 在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。含有n个顶点的无向完全图有n*(n-1)/2条边;
- 在有向图中,如果任意两个顶点之间都存在方向互为相反的两条弧,则称该图为有向完全图。含有n个顶点的有向完全图有n*(n-1).
- 对于具有n个顶点和e条边数的图,无向图0<=e<=n(n-1)/2,有向图0<=e<=n*(n-1);
- 有很少条边或弧的图称为稀疏图,反之称为稠密图。分界为n*logn.
- 与图的边或弧相关的数叫做权(weight),这种带权图常称为网(Network)。
- 假设有两个图G=(V,{E})和G'=(V',{E'}),如果V'包含于V且E'包含于E,则称G'为G的子图
图的顶点与边间的关系:
- 对于无向图G=(V,{E}),如果边(V,V')属于E,则称顶点V和V‘互为邻接点(Adjacent),即V和V’相邻接。边(V,V‘)依附于顶点V和V’,或者说(V,V‘)与顶点V和V' 相关联。顶点V的度就是和V相关联的边的数目记为TD(V);
- 对于有向图G=(V,{E}),如果弧(V,V')属于E,则称顶点V邻接到顶点V‘,顶点V’邻接自顶点V,弧(V,V‘)和顶点V和V’相关联。已顶点V为头的弧的数目称为V的入度,记为ID(V)已V为尾的弧的数目称为V的出度,记为OD(V);顶点V的度为TD(V)=ID(V)+OD(V);
- 路径的长度是路径上的边或弧的数目;
- 第一个顶点到最后一个顶点相同的路径称为回路或环。序列中顶点不重复出现的路径称为简单路径。除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的路径,称为简单回路或简单环;
连通图相关术语:
- 在无向图G中,如果从顶点V到顶点V’有路径,则称V和V‘是连通的。如果对于图中任意两个顶点Vi、Vj属于E,Vi、Vj都是连通的,则称G是连通图。
- 无向图中的极大连通子图称为连通分量。
- 要是子图;
- 子图要是连通的;
- 连通子图含有极大顶点数;
- 具有极大顶点数的连通子图包含依附于这些顶点的所有边。
连通图的生成树是一个极小的连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边;如果一个有向图恰有一个顶点的入度为0,其余顶点的入度均为1,则是一颗有向树。
图的抽象数据类型;
ADT
顶点的有穷非空集合和边的集合
Operation
CreatGraph(*G, V, E);//按照顶点集V和边弧集VR的定义构造图G
DestroyGraph(*G);//图G存在则销毁
LocateVex(G, u);//若图G中存在顶点u,则返回图中的位置
GetVex(G, v);//返回图G中顶点v的值
PutVex(G, v, value);//将图G中顶点v赋值value
FirstAdjVex(G, *v);返回v的一个邻接顶点,若顶点在G中无邻接顶点则返回为空
NextAdjVex(G,v,*w)://返回顶点v相对于顶点w的下一个邻接顶点,若w是v的最后一个邻接点则返回空
InsertVex(*G,v)://在图G中增添新顶点v
DeleteVex(*G,v)://删除图G中顶点v及其相关的弧
InsertArc(*G,v,w)://在图中增添弧<v,w>,若是无向图,还需增添对称弧<w,v>
DeleteArc(*G,v,w)://在图G中删除弧<v,w>,若是无向图,还需要删除对称弧<w,v>
DFSTraverse(G)://对图G进行深度优先遍历,在遍历过程中对每个顶点调用
HFSTraverse(G)://对图G进行广度优先遍历,在遍历过程中对每个顶点调用
endADT
以上是图的基础知识点,