C++数据结构-图的知识扩展:迪杰斯特拉算法求最短路径(C语言详解版)

如今出行已经不需要再为找不着路而担心了,车上有车载导航,手机中有导航 App。只需要确定起点和终点,导航会自动规划出可行的距离最短的道路。这是最短路径在人们实际生活中最典型的应用。

在一个网(有权图)中,求一个顶点到另一个顶点的最短路径的计算方式有两种:迪杰斯特拉(Dijkstra算法)和弗洛伊德(Floyd)算法。迪杰斯特拉算法计算的是有向网中的某个顶点到其余所有顶点的最短路径;弗洛伊德算法计算的是任意两顶点之间的最短路径。

最短路径算法既适用于有向网,也同样适用于无向网。本节将围绕有向网讲解迪杰斯特拉算法的具体实现。

迪杰斯特拉算法计算的是从网中一个顶点到其它顶点之间的最短路径问题。

图 1 带权有向图

如图 1 所示是一个有向网,在计算 V0 到其它所有顶点之间的最小路径时,迪杰斯特拉算法的计算方式为:

从 V0 出发,由于可以直接到达 V2 和 V5 ,而其它顶点和 V0 之间没有弧的存在,所以之间的距离设定为无穷大,可以得到下面这个表格:

从表格中可以看到,V0 到 V2 的距离最近,所以迪杰斯特拉算法设定 V0-V2 为 V0 到 V2 之间的最短路径,最短路径的权值和为 10。

已经判断 V0-V2 是最短路径,所以以 V2 为起始点,判断 V2 到除了 V0 以外的其余各点之间的距离,如果对应的权值比前一张表格中记录的数值小,就说明网中有一条更短的路径,直接更新表格;反之表格中的数据不变。可以得到下面这个表格:

例如,表格中 V0 到 V3 的距离,发现当通过 V2 到达 V3 的距离比之前的 ∞ 要小,所以更新表格。

更新之后,发现 V0-V4 的距离最近,设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dola_Pan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值