开启慢查询日志( SET GLOBAL long_query_time=阈值;超过阈值的sql就会记录到慢查询日志当中),或查看执行计划(explain+SQL)。慢查询优化如下:
(1)分析sql语句,是否加载了不需要的数据列
(2)分析sql执行计划,字段有没有索引,索引是否失效,是否用对索引
(3) 使用复杂查询时,尽量使用关联查询来代替子查询,并且最好使用内连接
(4)orderby查找时使用索引进行排序,否则的话需要进行回表,然后在排序缓冲区中进行排序。
(5)groupby查询时,同样要建立联合索引,避免使用到临时表
(6)分页查询时,如果偏移量太大,比如要查询一百万条数据后的十条记录,可以使用主键+子查询的方式,避免进行全表扫描
(7)使用count函数时直接使用count的话count(*)的效率最高,也可以额外创建一张表去统计不同表中的数据行数,但维护麻烦count(*)或count(唯一索引)或count(数字):表中总记录数,count(字段)不会统计null
(8)在写update语句时,where条件要添加使用索引,否则会锁会从行锁升级为表锁
(9)表中数据是否太大,是不是要分库分表
一、插入数据
1.小数据插入(500~1000)
- 批量插入
insert into tb_test values(1 ,'Tom'),(2,'Cat').(3,'Jerry');
- 手动提交事务
start transaction; insert into tb_test values(1,'Tom').(2,'Cat')(3,'Jerry'); insert into tb_test values(4,'Tom'),(5,'Cat')(6,'Jerry'); insert into tb_test values(7,'Tom'),(8,'Cat')(9,'Jerry'); commit;
- 主键顺序插入
2.大批量插入数据
如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的loadl指令进行插入。操作如下:
#客户端连接服务端时,加上参数--local-infile
mysql --local-infile -u root p
#查询从本地加载文件导入数据的开关是否开启,0为关闭,1为开启
select @@local_infile;
#设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
#执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log into table 'tb_user fields terminated by ',' lines terminated by '\n' ;
二、主键优化
1.数据组织方式
在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table loT)。
2.页分裂
页可以为空,也可以填充一半,也可以填充100%。每个页包含了2~N行数据(如果一行数据多大,会行溢出),根据主键排列。
3.页合并
当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。
当页中删除的记录达到 MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。
4.主键设计原则
- 满足业务需求的情况下,尽量降低主键的长度。
- 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
- 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
- 业务操作时,避免对主键的修改。
三、order by优化
-
Using filesort :通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。
-
Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高。
-
根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
-
尽量使用覆盖索引。
-
多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
-
如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小 sort_buffer_size(默认256k)。
#查询缓冲区大小语句 show variables like 'sort_buffer_size';
四、group by优化
- Using temporary:查询时要建立一个临时表存放数据,性能较低。
- 在分组操作时,可以通过索引来提高效率。
- 分组操作时,索引的使用也是满足最左前缀法则的。
五、limit优化
一个常见又非常头疼的问题就是limit 2000000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000 - 2000010的记录,其他记录丢弃,查询排序的代价非常大。
优化思路:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。
六、count优化
- MyISAM引擎把一个表的总行数存在了磁盘上,因此执行count(*)的时候会真接返回这个数,效率很高(前提是没有任何
where
条件约束); - InnoDB引擎执行count(*)的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。
优化思路:自己计数。
1.count的几种用法
count()是一个聚合函数,对于返回的结果集,一行行地判断,如果count函数的参数不是NULL,累计值就加1,否则不加,最后返回累计值。
(1)count(*)
InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。
(2)count(主键)
InnoDB引擎会遍历整张表,把每一行的主键id值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为nul)。
(3)count(字段)
- 没有not null约束:InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。
- 有not null约束: InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。
(4)count(1)
- InnoDB引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。
- count(0)、count(-1)是一样的、
按照效率排序:count(字段)<count(主键id)<count(1) ≈ count(*),所以尽量使用count(*)
七、update优化
InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。