这道题主要是理解题意:
就是理解这段:
最短路径最大值是啥?
就是:英雄从S点出发,然后去到其他能到达的点的距离的最小值的最大值;比如:
那么就是最短距离最大值就是100,因为需要把S点到其他点的最短距离全部算出来,然后取最大值;
这就是最短距离最大值的意思;
然后就是后面一句的意思:如果一个点需要 put out那么消防队队员就会出动(在不同的点上),那么这个的最短距离最大值就是:所有消防员需要put out的点的最短距离最大值;就是这个意思:
那么三个消防员到到put out点的最短距离最大值就是100;(就是把put out点距离每个消防员的最短距离给求出来最后求每个点的最大值);
其实理解题意就解决了一大半了;所以很明显求一个点到其他点的最短距离就是用dijkstra算法;
好像他们有人用floyd算法;但是我感觉dijkstra算法效率应该更高一些吧,嘻嘻;
因为以前懂了dijkstra所以这里直接带模板就AC了;
#include<set>
#include<map>
#include<queue>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define ll long long
#define PII pair<int, int>
#define ull unsigned long long
const int inf=0x3f3f3f3f;
const int maxn=1e5+7;
using namespace std;
//-------head---------
int a[10050];
int V, EE, S, K, C;
int ansS, ansK;
struct Edge {//板子
int from, to, dist;
Edge(int u, int v, int d) :from(u), to(v), dist(d) {}
};
struct HeapNode {//板子
int d, u;
HeapNode(int d, int u) :d(d), u(u) {}
bool operator < (const HeapNode& rhs) const {
return d > rhs.d;
}
};
struct Dijkstra {//板子
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
bool done[maxn];//标记
int d[maxn];//存最短距离
int p[maxn];
void init(int n,int m) {
this->n = n;
this->m=m;
for (int i = 0; i<n; i++) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int dist) {
edges.push_back(Edge(from, to, dist));
m = edges.size();
G[from].push_back(m - 1);
}
void dijkstra(int s) {
priority_queue<HeapNode> Q;
for (int i = 0; i <= n; i++)d[i] = inf;
d[s] = 0;
memset(done, 0, sizeof(done));
Q.push(HeapNode(0, s));
while (!Q.empty()) {
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if (done[u])continue;
done[u] = true;
for (int i = 0; i<G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if (d[e.to]>d[u] + e.dist) {
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
Q.push(HeapNode(d[e.to], e.to));
}
}
}
}
}dij;//建对象
int main()
{
int t;
scanf("%d", &t);
while(t--){
ansS=ansK=0;
scanf("%d%d%d%d%d", &V, &EE, &S, &K, &C);//输入点数,边数,英雄出发点,消防员个数,C值
dij.init(V,EE);//清空
for(int i=0; i<K; i++){
scanf("%d", &a[i]);//输入消防点位
}
for(int i=0; i<EE; i++){
int u, v, w;
scanf("%d%d%d", &u, &v, &w);//建立无向图
dij.AddEdge(u,v,w);
dij.AddEdge(v,u,w);
}
dij.dijkstra(S);//找一遍,英雄到其它点的最短距离存在dij.d[]中
int anskk[10050];
for(int i=1; i<=V; i++){
if(dij.d[i]!=inf){//如果可以到达,那么就找出最短距离最大值
ansS=max(ansS, dij.d[i]);
}
}
memset(anskk,inf,sizeof(anskk));
for(int i=0; i<K; i++){//枚举每个消防队员
dij.dijkstra(a[i]);
for(int j=1; j<=V; j++) {
if(dij.d[j]!=inf){//记录消防队员到j这个点的最短距离
anskk[j]=min(anskk[j],dij.d[j]);//anskk用来存,K个消防队员到j点的最短距离
}
}
}
for(int i=1;i<=V;i++){
ansK=max(anskk[i],ansK);//求出最大距离
}
// cout<<ansS<<" "<<ansK<<endl;
if(ansK*C>=ansS){//输出答案
printf("%d\n", ansS);
}
else{
printf("%d\n", ansK);
}
}
return 0;
}