Fire-Fighting Hero(dijsktra+图论)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这道题主要是理解题意:
就是理解这段:
在这里插入图片描述
最短路径最大值是啥?
就是:英雄从S点出发,然后去到其他能到达的点的距离的最小值的最大值;比如:
在这里插入图片描述
那么就是最短距离最大值就是100,因为需要把S点到其他点的最短距离全部算出来,然后取最大值;
这就是最短距离最大值的意思;
然后就是后面一句的意思:如果一个点需要 put out那么消防队队员就会出动(在不同的点上),那么这个的最短距离最大值就是:所有消防员需要put out的点的最短距离最大值;就是这个意思:
在这里插入图片描述
那么三个消防员到到put out点的最短距离最大值就是100;(就是把put out点距离每个消防员的最短距离给求出来最后求每个点的最大值);
其实理解题意就解决了一大半了;所以很明显求一个点到其他点的最短距离就是用dijkstra算法;
好像他们有人用floyd算法;但是我感觉dijkstra算法效率应该更高一些吧,嘻嘻;
因为以前懂了dijkstra所以这里直接带模板就AC了;

#include<set>
#include<map>
#include<queue>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fi first
#define se second
#define mp make_pair
#define pb push_back 
#define ll long long 
#define PII pair<int, int> 
#define ull unsigned long long 
const int inf=0x3f3f3f3f;
const int maxn=1e5+7;
using namespace std;
//-------head---------
int a[10050];
int V, EE, S, K, C;
int ansS, ansK;
struct Edge {//板子
	int from, to, dist;
	Edge(int u, int v, int d) :from(u), to(v), dist(d) {}
};
struct HeapNode {//板子
	int d, u;
	HeapNode(int d, int u) :d(d), u(u) {}
	bool operator < (const HeapNode& rhs) const {
		return d > rhs.d;
	}
};
struct Dijkstra {//板子
	int n, m;
	vector<Edge> edges;
	vector<int> G[maxn];
	bool done[maxn];//标记 
	int d[maxn];//存最短距离 
	int p[maxn];

	void init(int n,int m) {
		this->n = n;
        this->m=m;
		for (int i = 0; i<n; i++) G[i].clear();
		edges.clear();
	}

	void AddEdge(int from, int to, int dist) {
		edges.push_back(Edge(from, to, dist));
		m = edges.size();
		G[from].push_back(m - 1);
	}

	void dijkstra(int s) {
		priority_queue<HeapNode> Q;
		for (int i = 0; i <= n; i++)d[i] = inf;
		d[s] = 0;
		memset(done, 0, sizeof(done));
		Q.push(HeapNode(0, s));
		while (!Q.empty()) {
			HeapNode x = Q.top();
			Q.pop();
			int u = x.u;
			if (done[u])continue;
			done[u] = true;
			for (int i = 0; i<G[u].size(); i++) {
				Edge& e = edges[G[u][i]];
				if (d[e.to]>d[u] + e.dist) {
					d[e.to] = d[u] + e.dist;
					p[e.to] = G[u][i];
					Q.push(HeapNode(d[e.to], e.to));
				}
			}
		}

	}

}dij;//建对象
int main()
{
    int t;
    scanf("%d", &t);
    while(t--){
        ansS=ansK=0;
        scanf("%d%d%d%d%d", &V, &EE, &S, &K, &C);//输入点数,边数,英雄出发点,消防员个数,C值
        dij.init(V,EE);//清空
        for(int i=0; i<K; i++){
            scanf("%d", &a[i]);//输入消防点位
        }
        for(int i=0; i<EE; i++){
            int u, v, w;
            scanf("%d%d%d", &u, &v, &w);//建立无向图
           dij.AddEdge(u,v,w);
           dij.AddEdge(v,u,w);
        }
        dij.dijkstra(S);//找一遍,英雄到其它点的最短距离存在dij.d[]中
        int anskk[10050];
        for(int i=1; i<=V; i++){
            if(dij.d[i]!=inf){//如果可以到达,那么就找出最短距离最大值
            	ansS=max(ansS, dij.d[i]);
              }
            }
         
         memset(anskk,inf,sizeof(anskk));
		for(int i=0; i<K; i++){//枚举每个消防队员
            dij.dijkstra(a[i]);
                    for(int j=1; j<=V; j++) {
                      if(dij.d[j]!=inf){//记录消防队员到j这个点的最短距离
                      	   anskk[j]=min(anskk[j],dij.d[j]);//anskk用来存,K个消防队员到j点的最短距离
					  }	
					}
		 }  
           for(int i=1;i<=V;i++){
           	    ansK=max(anskk[i],ansK);//求出最大距离
		   }
		  // cout<<ansS<<" "<<ansK<<endl;
        if(ansK*C>=ansS){//输出答案
            printf("%d\n", ansS);
         }
        else{
            printf("%d\n", ansK);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值