这个题很有意思,1.正方形特点和几何特点。 2.枚举思路如何去定两个点枚举其余两个,而且只能往上走。
这个题意思就是给你整数点然后求出有这些整数点能构成多少个不同正多边形。
1.先推出只能是正方形才行:
可以发现这些多边形都有一个 整边 和一个根边(就是勾股定理算边长)所以不可能构成正多边形,所以可以锁定为正方形才能满足条件.
2.如何去枚举点?
这里有个小技巧把所有点变成第一象限及x,y轴上的点和原点
然后对于每个点上上枚举找到一个点之后,就可以两个for再去枚举其余两个点。
这里需要注意正方形可以这样搞。
把其他两个点的坐标公式推出来就OK,通用得
#include<bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<string>
#include<cstring>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<list>
using namespace std;
typedef long long ll;
//ll gcd(ll a,ll b){
// return b?gcd(b,a%b):a;
//}
//ll QP(ll x,ll n,ll Mod){
// ll res=1;
// while(n){
// if(n&res){
// res=(res*x)%Mod;
// }
// x=(x*x)%Mod;
// n>>=1;
// }
// return res;
//}
ll x,y,vis[600][600],T;
int main(){
while(~scanf("%lld",&T)){
memset(vis,0,sizeof(vis));
for(int i=0;i<T;i++){
cin>>x>>y;
vis[x+100][y+100]=1;//把坐标变到第一象限
}
//枚举所有点
ll ans=0;
for(int i=0;i<=200;i++){
for(int j=0;j<=200;j++){
if(vis[i][j]){
//再从这个点往上找一个点
for(int k=i;k<=200;k++){
for(int w=j+1;w<=200;w++){
if(vis[k][w]){
//说明找到了 他上面的那个点//利用正方形的一个知识去求解
if(vis[i+w-j][j-(k-i)]&&vis[k+w-j][w-(k-i)]){
ans++;
}
}
}
}
}
}
}
printf("%lld\n",ans);
}
return 0;
}