A - Character Encoding(组合数原理+结论)

在这里插入图片描述
在这里插入图片描述
解决这道题,首先来解决这个问题吧:
在这里插入图片描述
x是整数哈;
在这里插入图片描述
如果不考虑xi的约数条件,答案就是以下(表示方案数)
在这里插入图片描述
如果考虑了xi的取值(也就是0=<xi<n),那么答案就是:
在这里插入图片描述
所以以后写题可以直接带结论了;
所以这道题就可以for一遍了;

#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
#define MOD  998244353
#define MAXN  200005
ll F[MAXN], Finv[MAXN], inv[MAXN];//F是阶乘,Finv是逆元的阶乘 
void init() {//模板
    inv[1] = 1;
    for (ll i = 2; i < MAXN; i++) {
        inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
    }
    F[0] = Finv[0] = 1;
    for (ll i = 1; i < MAXN; i++) {
        F[i] = F[i - 1] * 1ll * i % MOD;
        Finv[i] = Finv[i - 1] * 1ll * inv[i] % MOD;
    }
}

ll C(ll n, ll m) //模板
{
    if (n < 0 || m < 0 || m > n) return 0;
    return F[n] * 1ll * Finv[n - m] % MOD * Finv[m] % MOD;
}
int main(){
	ll T;
	scanf("%lld",&T);
	init();
	while(T--){
		ll n,m,k;
		  scanf("%lld %lld %lld",&n,&m,&k);
		  ll ans=C(k+m-1,m-1);
		  for(ll i=1;i*n<=k;i++){
		  	if(i&1)ans=(MOD+ans-(C(m,i)*C(m+k-i*n-1,m-1))%MOD)%MOD;//注意这里需要防止负数出现
		  	else ans=(ans+C(m,i)*C(m+k-i*n-1,m-1)%MOD)%MOD;  
		  }
		  printf("%lld\n",ans);
		  
		  
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值