解决这道题,首先来解决这个问题吧:
x是整数哈;
如果不考虑xi的约数条件,答案就是以下(表示方案数)
如果考虑了xi的取值(也就是0=<xi<n),那么答案就是:
所以以后写题可以直接带结论了;
所以这道题就可以for一遍了;
#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
#define MOD 998244353
#define MAXN 200005
ll F[MAXN], Finv[MAXN], inv[MAXN];//F是阶乘,Finv是逆元的阶乘
void init() {//模板
inv[1] = 1;
for (ll i = 2; i < MAXN; i++) {
inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
}
F[0] = Finv[0] = 1;
for (ll i = 1; i < MAXN; i++) {
F[i] = F[i - 1] * 1ll * i % MOD;
Finv[i] = Finv[i - 1] * 1ll * inv[i] % MOD;
}
}
ll C(ll n, ll m) //模板
{
if (n < 0 || m < 0 || m > n) return 0;
return F[n] * 1ll * Finv[n - m] % MOD * Finv[m] % MOD;
}
int main(){
ll T;
scanf("%lld",&T);
init();
while(T--){
ll n,m,k;
scanf("%lld %lld %lld",&n,&m,&k);
ll ans=C(k+m-1,m-1);
for(ll i=1;i*n<=k;i++){
if(i&1)ans=(MOD+ans-(C(m,i)*C(m+k-i*n-1,m-1))%MOD)%MOD;//注意这里需要防止负数出现
else ans=(ans+C(m,i)*C(m+k-i*n-1,m-1)%MOD)%MOD;
}
printf("%lld\n",ans);
}
return 0;
}