arctanx求导

在这里插入图片描述

### 回答1: 首先,我们可以使用求导法来求解这个函数的导数: f(x) = arctan(x*x) f'(x) = 1 / (1 + x*x) * 2x 接下来,我们可以使用积分公式来计算函数的导数: ∫f'(x) dx = f(x) + C 其中C为常数。将f'(x)代入上式,得到: ∫1 / (1 + x*x) * 2x dx = arctan(x*x) + C 因此,arctan(x*x)的导数为1 / (1 + x*x) * 2x。 ### 回答2: 要求解求导数的问题,我们可以使用求导数的基本公式或者求导数的定义来解决。 首先,我们来使用求导数的基本公式来求解。 设函数为y = arctan(x*x),其中arctan表示反正切函数。 根据链式法则,我们可以得到导数公式: dy/dx = d(arctan(u))/du * du/dx 其中,u = x*x,dy/dx表示y关于x的导数,d(arctan(u))/du表示arctan关于u的导数,du/dx表示u关于x的导数。 首先,求出d(arctan(u))/du。根据求导公式,我们可以得到: d(arctan(u))/du = 1/(1+u^2) 然后,求出du/dx。由于u = x*x,根据求导公式,我们可以得到: du/dx = 2x 将上述两个结果代入导数公式中,可以得到: dy/dx = (1/(1+(x*x)^2)) * (2x) 化简上述结果,可以得到求得的导数表达式为: dy/dx = 2x / (1 + x^4) 最终,求得求arctan(x*x)的导数为2x / (1 + x^4)。 需要注意的是,由于arctan函数的定义域是整个实数集,因此上述导数表达式对于所有实数x都成立。 ### 回答3: 要求arctanx*x的导数,可以使用链式法则来计算。 首先,我们将arctanx表示为y,即y = arctanx。然后,我们对等式两边同时求导。 对左边进行求导,由于y = arctanx,所以y对x的导数为1/(1+x^2)。 对右边进行求导,根据链式法则,导数要乘以内函数对x的导数。 由于y = arctanx,所以对x的导数为1。 因此,求得arctanx*x的导数为(1/(1+x^2))*1 = 1/(1+x^2)。 所以,arctanx*x的导数为1/(1+x^2)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值