Sharding-JDBC的实践

基本概念

这几天在研究分表分库的方案。综合了几种数据库方案。
在这里插入图片描述
最后选型Sharding-jdbc。它主要有如下几个优点。

  1. 支持分布式事务
  2. 适用于任何基于Java的ORM框架。
  3. 对业务零侵入。

数据分片

数据分片是指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或者表中以达到提升性能瓶颈以及可用性的效果。数据分片有效手段是对关系型数据库进行分库和分表。分表可以降低每个单表的数据阈值,同时还能够将分布式事务转化为本地事务的。分库可以有效的分散数据库单点的访问量。

分片键

用于分片的数据库字段,是将数据库(表)进行水平拆分的关键字段。例如:将订单表中的订单主键的尾数取模分批拿,则订单主键就是分片字段,SQL中如果没有分片字段,则执行全库路由,性能较差。Sharding-JDBC也支持多个字段进行分片。

分片策略和分片算法

Sharding-JDBC 中共有五种分片策略。1、标准分片策略;2、复合分片策略;3、行表达式分片策略;4、Hint分片策略;5、不分片策略;对应的有4种分片算法,1、精确分片算法;2、范围分片算法;3、复合分片算法 ;4、Hint分片算法;
分片算法:
Sharding-JDBC并没有提供内置分片算法,而是通过分片策略将各种场景提炼出来,提供更高层次的抽象,并提供接口让应用开发者自行实现分片算法。
分片策略:
包含分片键和分片算法,由于分片算法的独立性,将其独立抽离。真正可用于分片操作的是分片键+分片算法,也就是分片策略。

在这里插入图片描述

Sharding-JDBC与SpringBoot整合策略

总体说明

本实例是结合相关项目来的,在该项目中订单id(orders_id)是一个核心的热点字段。然后,订单号是带有日期的,所以,本次分片的方案是按照时间分库分表,时间粒度可以年,月,季度。本demo中的时间粒度是年。

引入依赖

    <properties>
     <sharding-sphere.version>4.0.0-RC1</sharding-sphere.version>
    </properties>
     <!--shardingsphere -->
        <dependency>
            <groupId>org.apache.shardingsphere</groupId>
            <artifactId>sharding-core-api</artifactId>
            <version>${sharding-sphere.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.shardingsphere</groupId>
            <artifactId>sharding-jdbc-core</artifactId>
            <version>${sharding-sphere.version}</version>
        </dependency>

配置好依赖之后,接着就是配置数据源,以及数据的分片键,分片策略。在application.yml中配置如下

配置

#数据库连接
spring:
  shardingsphere:
    datasource:
      names: shard_order_0,shard_order_1
      shard_order_0:
          driver-class-name: com.mysql.jdbc.Driver
          url: jdbc:mysql://localhost:3306/shard_order_0
          username: root
          password: admin
      shard_order_1:
          driver-class-name: com.mysql.jdbc.Driver
          url: jdbc:mysql://localhost:3306/shard_order_1
          username: root
          password: admin
# 如下对orders表和orders_detail都做了分片配置,分片键分别是id,orders_id,
    sharding:
      tables:
        orders:
          actualDataNodes: shard_order_$->{0..1}.orders_$->{0..1}
          databaseStrategy:
            inline:
              shardingColumn:  adddate
          tableStrategy:
              inline:
                shardingColumn: id
        orders_detail:
          actualDataNodes: shard_order_$->{0..1}.orders_detail_$->{0..1}
          tableStrategy:
            inline:
              shardingColumn: orders_id     

如上可以看出,我这里配置了两个分库shard_order_0和shard_order_1;然后,每个分库下面又配置了两个逻辑表orders和orders_detail,每个逻辑表下有两个物理表。数据库的分片键是adddate,逻辑表orders的分片键是id,逻辑表orders_detail的分片键是orders_id。
完成配置之后接着就是要定义数据库的分片策略和分片的策略以及初始化DataSource。因为本次在主库中加了一个路由表,在路由时动态查取该分片值所需要查找的分库分表,所以,需要再多配置一个数据源。用于执行分库的算法时可以查询路由表,项目结构如图所

。。。。。。。。。。。。。。。。。
版权原因,完整文章,请参考如下:

Sharding-JDBC的实践

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值