计算机视觉
文章平均质量分 73
Old urchin
这个作者很懒,什么都没留下…
展开
-
点云分割思路
1.稀疏点云分割(从有组织的激光雷达数据分割地面点)主要函数(segmentGroundFromLidarData)将三维激光雷达数据分割成地面和非地面部分。激光雷达必须水平安装2.欧氏距离点云聚类分割主要函数(pcsegdist)采用KD-Tree近邻搜索,将距离小于设定阈值的点云聚类分割成簇;为点云中的每个点分配一个整数簇标签,并返回所有点的标签、集群的数量。3.简单形态滤波(SMRF)地面分割主要函数(segmentGroundSMRF)算法分为三个阶段:涨知识:高程表面用于定义地图或原创 2022-04-12 17:16:49 · 4449 阅读 · 0 评论 -
点云拟合思路
1、最小二乘拟合原理:使得残差平方和最小 ,可用于曲线拟合矩阵解法:假设函数的矩阵表达式为损失函数定义为:拟合空间球体:拟合二次曲面参考文献:列车车轴空间直线度检测[J].计算机应用,2019,39(10):2960-2965(SVD法)算法原理:拟合平面方程:ax+by+cz+d=0约束条件:a²+b²+c²=1要求使得k个邻近点到该平面的距离的平方和最小...原创 2022-04-12 11:46:22 · 5547 阅读 · 0 评论 -
点云配准论文思想
采用局部表面拟合方法进行法线估计,并计算其快速点特征直方图。然后通过采样一致性对两组点云进行粗配准。最后通过建立KD-Tree加速搜索效率,设定阈值去除错误点对,实现精准配准。三维激光扫描技术广泛应用于城市建筑三维建模,古建筑测量与文物保护等领域。由于地理环境复杂度较高,需要用激光相机沿着多个视角进行数据采集,然后配准实现全面表达。配准方式:根据特征原创 2022-04-11 17:04:07 · 4102 阅读 · 1 评论 -
点云数据去噪
主要包括双边滤波、曲率流、密度均值漂流聚类、噪声分类去噪、神经网络、曲率特征混合分类的高密度点云去噪 体素滤波结合区域生长 等1、双边滤波算法进行点云去噪,双边滤波器是基于空间分布的一个高斯函数,能够较好地保存目标物的高频信息,它使点云数据的整体趋势更加平滑,数据点顺着法向发生位移。2、基于曲率流的去噪算法,每 个 点 按 照 它 的 曲 率 速 度 沿 着 法 向 移 动。以上两者虽然都能使点云模型光顺,但同时会改变点的坐标,使点云信息的纹理信息丢失。 3、基于密度的均值漂移聚类去噪算法,使每个点原创 2022-02-14 20:32:49 · 8398 阅读 · 0 评论 -
论文中图像三维重建的思路
机器人领域:三维重建主要有两类应用,一类是移动机器人的定位导航地图构建SLAM(第一篇)另一类是机器人的抓取任务,待抓取物体的三维模型构建基于激光雷达的三维地图实时重建方法对象:移动机器人(是比较配的)重建步骤分为三步:(1)移动机器人状态采集(2)激光雷达信号去噪(3)导航三维地图重建状态信息的采集激光雷达传感器采集信息使用多个激光雷达传感器将相同目标状态信息进行实时采集,由于具有一定的重复性,设置一个阈值T,然后将采集到的信息进行相似度运算处理,进行取舍 。移动机器人位置变化计算模型原创 2022-02-04 10:21:48 · 3220 阅读 · 1 评论