P2574 XOR的艺术 线段树 延迟标记

题目大意:

给定一个 01 01 01串,有如下两个操作:
一、统计区间 [ l , r ] [l, r] [l,r]中的 1 1 1 的个数
二、将区间 [ l , r ] [l, r] [l,r]内的 0 0 0 变成 1 1 1 1 1 1 变成 0 0 0

做法:

只需要对线段树的延迟标记做一些修改即可。
线段树节点维护区间内 1 1 1 的个数。
进行一次 二 操作,那么区间中的 1 1 1 的个数就会变成原来 0 0 0 的个数,也就是将线段树维护的值变为 : r − l + 1 − d a t r- l + 1 - dat rl+1dat
还会发现对同一区间做偶数次 二 操作就相当于没有进行操作,也就不需要将延迟标记再下放。所以延迟标记只有两个状态, 0 0 0 表示没有进行修改操作(进行偶数次操作), 1 1 1表示该节点曾经被修改,它的子节点没有被修改(进行奇数次操作),通过 add 异或(XOR) 1 即可实现 0 、 1 0、1 01转换。

自己的错误:

q u e r y query query函数中 l , r l,r lr永远是询问的区间范围,不是代表结点的区间范围

代码:

/**
* Author : Xiuchen
* Date : 2020-02-25-12.17.06
* Description : P2574.cpp
*/
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include<cstdio>
#include<cstring>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<cmath>
#include<math.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3fLL;
const int maxn = 2e5 + 100;
int gcd(int a, int b){
    return b ? gcd(b, a % b) : a;
}
struct SegmentTree{
    int l, r, add, sum;//add是延迟标记
    #define l(x) t[x].l
    #define r(x) t[x].r
    #define add(x) t[x].add
    #define sum(x) t[x].sum
} t[maxn * 4];
int n, m;
char s[maxn];
void push_up(int p){
    sum(p) = sum(p * 2) + sum(p * 2 + 1);
}
void push_down(int p){
    if(add(p)){
        sum(p * 2) = r(p * 2) - l(p * 2) + 1 - sum(p * 2);
        sum(p * 2 + 1) = r(p * 2 + 1) - l(p * 2 + 1) + 1 - sum(p * 2 + 1);
        add(p * 2) ^= add(p);
        add(p * 2 + 1) ^= add(p);
        add(p) = 0;
    }
}
void build(int p, int l, int r){
    l(p) = l, r(p) = r;
    if(l == r){
        sum(p) = s[l] - '0';
        add(p) = 0;
        return;
    }
    int mid = (l + r) >> 1;
    build(p * 2, l, mid);
    build(p * 2 + 1, mid + 1, r);
    push_up(p);
    return;
}
void change(int p, int l, int r){
//    printf("l, r : %d %d\n", l(p), r(p));
    if(l <= l(p) && r(p) <= r){
        add(p) ^= 1;
        sum(p) = r(p) - l(p) + 1 - sum(p);
        return;
    }
    push_down(p);
    int mid = (l(p) + r(p)) >> 1;
    if(l <= mid) change(p * 2, l, r);
    if(mid < r) change(p * 2 + 1, l, r);
    push_up(p);
}
int query(int p, int l, int r){//因为不习惯新的代码风格,将此处写错
    if(l <= l(p) && r(p) <= r) return sum(p);
    int ans = 0;
    int mid = (l(p) + r(p)) >> 1;
    push_down(p);
    if(l <= mid) ans += query(p * 2, l, r);//l,r永远是询问的空间,不是代表结点的区间范围
    if(mid < r) ans += query(p * 2 + 1, l, r);
    return ans;
}
int main(){
    scanf("%d%d", &n, &m);
    scanf("%s", s + 1);
    build(1, 1, n);
    while(m--){
        int op, l, r;
        scanf("%d%d%d", &op, &l, &r);
        if(op == 1) printf("%d\n", query(1, l, r));
        else change(1, l, r);
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
当然可以用线段树来实现。下面是使用线段树的代码实现: ```python n = int(input()) segs = [] for i in range(n): l, r = map(int, input().split()) segs.append((l, r)) # 建立线段树 def build_tree(l, r, idx): if l == r: tree[idx] = (segs[l], 0, 0) # 每个叶子节点保存一条线段和异或值 return m = (l + r) // 2 build_tree(l, m, idx * 2) build_tree(m + 1, r, idx * 2 + 1) tree[idx] = merge(tree[idx * 2], tree[idx * 2 + 1]) # 合并两个节点的信息 def merge(node1, node2): (l1, r1), len1, inter1 = node1 (l2, r2), len2, inter2 = node2 if r1 < l2 or r2 < l1: return ((0, 0), 0, 0) # 不相交,返回空线段和0 l = max(l1, l2) r = min(r1, r2) len3 = len1 + len2 - (r - l) # 计算异或值 inter3 = min(inter1, inter2) + (r - l) # 计算交的长度 return ((l, r), len3, inter3) # 查询区间最大异或值 def query(l, r, idx): if l > r: return ((0, 0), 0, 0) if l == tree[idx][0][0] and r == tree[idx][0][1]: return tree[idx] m = (tree[idx][0][0] + tree[idx][0][1]) // 2 if r <= m: return query(l, r, idx * 2) elif l > m: return query(l, r, idx * 2 + 1) else: return merge(query(l, m, idx * 2), query(m + 1, r, idx * 2 + 1)) # 构建线段树 tree = [(0, 0, 0)] * (4 * n) build_tree(0, n - 1, 1) # 查询最大异或值 max_xor = 0 for i in range(n): _, len1, inter1 = query(0, i - 1, 1) _, len2, inter2 = query(i + 1, n - 1, 1) max_xor = max(max_xor, len1 + len2 - inter1 - inter2) print(max_xor) ``` 在线段树中,每个节点保存了一条线段、线段的异或值和线段的交的长度。可以通过递归合并左右子树的信息来计算父节点的信息。查询时,我们可以将线段分成两部分,分别查询左半部分和右半部分的最大异或值,然后将它们合并起来。 时间复杂度为 $O(n\log n)$,空间复杂度为 $O(n\log n)$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值