【Tensorflow2.x学习笔记】Tensorflow实现鸢尾花分类

一、数据集处理

导入数据

我们使用sklearn中的鸢尾花数据集作为模型的数据集。在将属性特征与标签导入后,由于原始数据是顺序的,我们对数据进行打乱操作同时设置相同的随机数种子,保证在打乱的过程中输入特征与标签一一对应。

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样
# 使用相同的seed,保证输入特征和标签一一对应
np.random.seed(116)
# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# 多维矩阵中,只对第一维(行)做打乱顺序操作
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
划分训练/测试集

由于原始数据个数为150,我们划分打乱后数据的前120个数据作为训练集,后30个数据作为测试集。

# 将打乱后的数据集分割为训练集与测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
数据集分批次

使用from_tensor_slices()函数将属性特征与标签合成一组,之后分别对训练集与测试集划分批次,batch_size为32。

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch_size=32)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

二、训练模型

生成随机参数

对于参数w与b,我们使用服从正态分布,标准差为0.1的随机数进行初始化。设置w为4 x 3的矩阵,b为1 x 3的矩阵。

# 生成神经网络的参数,4个输入特征,输入层为4个节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(实践时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))
训练过程

我们考虑到训练集个数为120,btach_size设置为32,也就是说每次epoch中会有4个batch,又因为每batch执行一次更新一次参数即step一次,所以说每个epoch中会有4次step。
在算出估计值后,我们使用softmax将其转换为概率值,同时也将实际值转换为独热编码格式,使得估计值与实际值方便计算误差(采用均方误差损失函数),并创建变量对误差进行累加。然后,我们计算w与b的梯度,并对参数值进行更新。最后,在每step一步之后,我们对epoch轮数以及误差均值进行打印,并将误差均值存入list中以备后续可视化操作。

# 训练部分
# 数据集级别的循环,每个epoch循环一次数据集
for epoch in range(epochs):
    # batch级别的循环,每个step循环一个batch
    for step, (x_train, y_train) in enumerate(train_db):
        # with结构记录梯度的信息
        with tf.GradientTape() as tape:
            # 神经网络乘加运算
            y = tf.matmul(x_train, w1) + b1
            # 使得输出y符合概率分布(此操作后与独热码同量级,可相减后求loss)
            y = tf.nn.softmax(y)
            # 将标签值转换为独热编码格式,方便计算loss和accuracy
            y0 = tf.one_hot(y_train, depth=3)
            # 采用均方误差损失函数 mse=mean(sum(y0 - y)^2)
            loss = tf.reduce_mean(tf.square(y0 - y))
            # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
            loss_all += loss.numpy()
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])
        # 实现梯度更新 w1 = w1 - lr * w1_grad或b = b- lr * b1_grad
        w1.assign_sub(lr * grads[0])
        b1.assign_sub(lr * grads[1])

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all / 4))
    # 将4个step的loss求平均记录在此变量中
    train_loss_results.append(loss_all / 4)
    # loss_all归零,为记录下一个epoch的loss做准备
    loss_all = 0

三、测试模型

测试过程

在每个epoch的测试batch中,我们使用测试集与进行更新后的w与b参数进行计算,得到预测值;然后判断预测值与真实值是否相等,并对分类正确的结果进行累加同时获得测试batch中的个数;最后使用分类正确的个数除以测试数据总数得到准确率并存入list中供acc可视化使用。

# 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        # 返回y中(行)最大值的索引,即预测的分类
        pred = tf.argmax(y, axis=1)
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool类型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("-------------------")

四、误差/准确率可视化

绘制loss曲线
# 绘制loss曲线
# 图片标题
plt.title("Loss Function Curve")
# x轴变量名称
plt.xlabel("Epoch")
# y轴变量名称
plt.ylabel("Loss")
# 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.plot(train_loss_results, label="$Loss$")
# 画出曲线图标
plt.legend()
# 画出图像
plt.show()
绘制acc曲线
# 绘制Accuracy曲线
# 图片标题
plt.title("Acc Curve")
# x轴变量名称
plt.xlabel("Epoch")
# y轴变量名称
plt.ylabel("Acc")
# 逐点画出test_acc值并连线,连线图标是Accuracy
plt.plot(test_acc, label="$Accuracy$")
plt.legend()
plt.show()

五、完整代码

# -*- coding : utf-8 -*-            
# @Time : 2022/3/6 15:36
# @Author : SXQ
# @FileName : p45_iris

# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线
import tensorflow as tf
import numpy as np
from sklearn import datasets
from matplotlib import pyplot as plt

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样
# 使用相同的seed,保证输入特征和标签一一对应
np.random.seed(116)
# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# 多维矩阵中,只对第一维(行)做打乱顺序操作
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)

# 将打乱后的数据集分割为训练集与测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch_size=32)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征,输入层为4个节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(实践时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

# 学习率为0.1
lr = 0.1
# 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
train_loss_results = []
# 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
test_acc = []
# 循环500轮
epochs = 500
# 每轮分4个step,loss_all记录四个step生成的4个loss的和
loss_all = 0

# 训练部分
# 数据集级别的循环,每个epoch循环一次数据集
for epoch in range(epochs):
    # batch级别的循环,每个step循环一个batch
    for step, (x_train, y_train) in enumerate(train_db):
        # with结构记录梯度的信息
        with tf.GradientTape() as tape:
            # 神经网络乘加运算
            y = tf.matmul(x_train, w1) + b1
            # 使得输出y符合概率分布(此操作后与独热码同量级,可相减后求loss)
            y = tf.nn.softmax(y)
            # 将标签值转换为独热编码格式,方便计算loss和accuracy
            y0 = tf.one_hot(y_train, depth=3)
            # 采用均方误差损失函数 mse=mean(sum(y0 - y)^2)
            loss = tf.reduce_mean(tf.square(y0 - y))
            # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
            loss_all += loss.numpy()
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])
        # 实现梯度更新 w1 = w1 - lr * w1_grad或b = b- lr * b1_grad
        w1.assign_sub(lr * grads[0])
        b1.assign_sub(lr * grads[1])

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all / 4))
    # 将4个step的loss求平均记录在此变量中
    train_loss_results.append(loss_all / 4)
    # loss_all归零,为记录下一个epoch的loss做准备
    loss_all = 0

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        # 返回y中(行)最大值的索引,即预测的分类
        pred = tf.argmax(y, axis=1)
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool类型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("-------------------")
# 绘制loss曲线
# 图片标题
plt.title("Loss Function Curve")
# x轴变量名称
plt.xlabel("Epoch")
# y轴变量名称
plt.ylabel("Loss")
# 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.plot(train_loss_results, label="$Loss$")
# 画出曲线图标
plt.legend()
# 画出图像
plt.show()

# 绘制Accuracy曲线
# 图片标题
plt.title("Acc Curve")
# x轴变量名称
plt.xlabel("Epoch")
# y轴变量名称
plt.ylabel("Acc")
# 逐点画出test_acc值并连线,连线图标是Accuracy
plt.plot(test_acc, label="$Accuracy$")
plt.legend()
plt.show()

运行代码后,我们得到loss与Accuracy的可视化曲线图如下图所示:
在这里插入图片描述

在这里插入图片描述
通过loss下降曲线的平滑度以及Accuracy曲线在200epoch逐渐趋近于1,我们可以看出分类效果还不错,模型较为稳定

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值