TensorFlow实现鸢尾花分类代码
一:代码
from sklearn import datasets
from matplotlib import pyplot as plt
import tensorflow as tf
import numpy as np
# 获取鸢尾花数据和对应的标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target
'''
因为原始数据是有序的,顺序不打乱就会影响准确率
seed:随机数种子,是一个整数,当设置之后,每次生成的随机数都一样
'''
np.random.seed(116) # 使用相同的随机种子,使得输入特征与标签能够一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
# 对数据集进行分类,分成训练集和测试集
x_train = x_data[:-30] # 共150条数据,获取前120条数据
y_train = y_data[:-30]
x_test = x_data[-30:] # 将后30条数据作为测试
y_test = y_data[-30:]
# 将x的数据进行类型转换,否则后面矩阵相乘时会因类型不一致而 报错
x_train = tf.cast(x_train,tf.float32)
x_test = tf.cast(x_test,tf.float32)
'''
将特征值与标签配对起来,并将每32组特征和标签对打包成一个batch,之后在喂入神经网络时会以batch为单位喂入
'''
train_db = tf.data.Dataset.from_tensor_slices((x_train,y_train)).batch(30)
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test)).batch(30)
'''
定义神经网络中所有可训练的参数
生成神经网络的参数:4个输入特征,因此输入层有四个输入节点;因为最终结果有三种结果,所以输出层是三个节点
使用seed使每次生成的随机数相同
'''
w1 = tf.Variable(tf.random.truncated_normal([4,3],stddev=0.1,seed=1)) # 生成权值随机数,此时表示的是4个输入单元,3个输出单元
b1 = tf.Variable(tf.random.truncated_normal([3],stddev=0.1,seed=1)) # 生成阈值
lr = 0.1 # 设置学习率
train_loss_result = [] # 将每轮产生的loss数据存放在此列表中,为后面画loss曲线提供数据
test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500 # 训练500轮
loss_all = 0 # 每轮分4个step。loss_all记录四个step生成的4个loss的和
# 嵌套循环,在with结构中来更新参数,并显示当先的loss损失函数
for epoch in range(epoch): # 数据集级别的循环,每个epoch循环一次数据集,训练500次
for step,(x_train,y_train) in enumerate(train_db):
with tf.GradientTape() as tape: # with 结构记录梯度信息
y = tf.matmul(x_train,w1) + b1 # 矩阵相乘并加上阈值,前向传播进行计算
y = tf.nn.softmax(y) # 使y的输出符合概率分布,此操作后就与独热码同量级
y_ = tf.one_hot(y_train,depth=3) # 将标签设置成独热码,方便计算loss和acc
loss = tf.reduce_mean(tf.square(y_-y)) # 使用均方误差损失函数
loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据
# 前馈
grads = tape.gradient(loss,[w1,b1]) # 计算loss函数的各个参数的梯度
# 实现梯度的更新 w1 = w1 -lr*w1_grad b = b-lr*b_grad
w1.assign_sub(lr*grads[0])
b1.assign_sub(lr*grads[1])
# 对于每个epoch,打印出loss信息
print("Epoch{},loss:{}".format(epoch,loss_all/4))
train_loss_result.append((loss_all/4))
loss_all = 0
# 测试部分,计算精度
total_correct,total_number = 0,0
for x_test,y_test in test_db:
# 使用更新后的数据进行预测
y = tf.matmul(x_test,w1)+b1
y = tf.nn.softmax(y)
pred = tf.argmax(y,axis=1) # 返回y的最大值的索引,即为预测结果
# 将pred转变成y_test()类型
pred = tf.cast(pred,dtype=y_test.dtype)
# 若分类正确,则correct=1,否则为0,将bool类型的结果转变成int类型
correct = tf.cast(tf.equal(pred,y_test),dtype=tf.int32) # equal判断是否相同,如果相同就是True,否则为Flase
# 将每个batch的correct数加在一起
correct = tf.reduce_sum(correct)
# 将所有batch中的correct数加在一起
total_correct+=int(correct)
# total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
total_number += x_test.shape[0]
# 总的准确率等于total_correct/total_number
acc = total_correct/total_number
test_acc.append(acc)
print("Test_acc",acc)
print("-------------------------------------------------------")
# 绘制loss曲线
plt.title('Loss Function Curve')
plt.xlabel('Epoch') # x轴变量名
plt.ylabel('Loss') # y轴变量名
plt.plot(train_loss_result,label="$Loss$") # 逐点画出值并连线
plt.legend() # 画出曲线图标
plt.show() # 画出图像
# 绘制Accuracy 曲线
plt.title('Acc Curve')
plt.xlabel("Epoch")
plt.ylabel("Acc")
plt.plot(test_acc,label="$Accuracy$")
plt.legend()
plt.show()
二:结果
损失函数:
随着训练次数的增加,损失函数越来越趋向于0,即证明预测值与正确答案之间的差距越来越小
精确度:
随着训练次数的增加,精确度越来越趋向于1