这里的第二种方法是我们本次使用的,即用哈希表和滑动窗口进行解答,滑动窗口依次将每一个元素做为起始位置的无重复子串进行判断并与当前的最长子串长度进行比较,将较大的赋值给最终结果,这里不使用unordered_map是因为其是键值对的组合,在插入以及判断元素是否存在的时候不如unordered_set方便,因此选用后者作为基本数据结构进行。
class Solution {
public:
int lengthOfLongestSubstring(string s) {
// int s_size = s.size();
// int left = 0, right = 0, length = 0, res = 0;
// unordered_map<char, int> hash;
// while(right < s_size)
// {
// char temp = s[right];
// // 如果当前字符已经在哈希表中出现并且当前字符的位置大于等于左游标
// if(hash.find(temp) != hash.end() && hash[temp] >= left)
// {
// // 左游标应该更新至重复字符的后一位
// left = hash[temp] + 1;
// length = right - left;
// }
// hash[temp] = right;
// ++right;
// 因为left后移了一位,所以这里需要Lengtht也要自增才能保证长度正确
// ++length;
// // 保存最大值
// res = max(length, res);
// }
// return res;
int n = s.size();
int left = -1, res = 0;
// unordered_map<char, int> hash; 这里使用map系列不方便,因此以后可以多考虑使用set系列
unordered_set<char> set;
for(int i = 0;i < n;++i)
{
// 左指针右移的时候删除左边的数据
if(i != 0)
set.erase(s[i - 1]);
// 如果当前元素没出现过并且左边的指针没有超出界限,那么将当前元素插入哈希表末尾
while(set.count(s[left + 1]) == 0 && left + 1 < n)
{
set.insert(s[left + 1]);
++left;
}
res = max(res, left - i + 1);
}
return res;
}
};