方法一:滑动窗口
思路和算法
我们先用一个例子考虑如何在较优的时间复杂度内通过本题。
我们不妨以示例一中的字符串 \texttt{abcabcbb}abcabcbb 为例,找出从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:
以 \texttt{(a)bcabcbb}(a)bcabcbb 开始的最长字符串为 \texttt{(abc)abcbb}(abc)abcbb;
以 \texttt{a(b)cabcbb}a(b)cabcbb 开始的最长字符串为 \texttt{a(bca)bcbb}a(bca)bcbb;
以 \texttt{ab©abcbb}ab©abcbb 开始的最长字符串为 \texttt{ab(cab)cbb}ab(cab)cbb;
以 \texttt{abc(a)bcbb}abc(a)bcbb 开始的最长字符串为 \texttt{abc(abc)bb}abc(abc)bb;
以 \texttt{abca(b)cbb}abca(b)cbb 开始的最长字符串为 \texttt{abca(bc)bb}abca(bc)bb;
以 \texttt{abcab©bb}abcab©bb 开始的最长字符串为 \texttt{abcab(cb)b}abcab(cb)b;
以 \texttt{abcabc(b)b}abcabc(b)b 开始的最长字符串为 \texttt{abcabc(b)b}abcabc(b)b;
以 \texttt{abcabcb(b)}abcabcb(b) 开始的最长字符串为 \texttt{abcabcb(b)}abcabcb(b)。
发现了什么?如果我们依次递增地枚举子串的起始位置,那么子串的结束位置也是递增的!这里的原因在于,假设我们选择字符串中的第 kk 个字符作为起始位置,并且得到了不包含重复字符的最长子串的结束位置为 r_kr
k
。那么当我们选择第 k+1k+1 个字符作为起始位置时,首先从 k+1k+1 到 r_kr
k
的字符显然是不重复的,并且由于少了原本的第 kk 个字符,我们可以尝试继续增大 r_kr
k
,直到右侧出现了重复字符为止。
这样一来,我们就可以使用「滑动窗口」来解决这个问题了:
我们使用两个指针表示字符串中的某个子串(或窗口)的左右边界,其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的 r_kr
k
;
在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束