CF-Round#624-div3-E题

CF-Round#624-div3-E题

E. Construct the Binary Tree

传送门

这道题构造题。
构造一颗二叉树。

题目大意:给你结点个数和总深度。问是否能够构造出满足要求结点个数和深度的树,这里的深度定义为每个结点到根结点的路径长度总和。

我们可以直接初始化这颗树为一条单链。这条单链的深度是这n个结点的最大深度上限。如果超过了这个上限。直接输出NO即可
还有一种情况,就是结点个数很多。但是深度要求很小。这种情况也无法构造出符合要求的二叉树。这种情况也需要输出NO,但是这种情况可以放在后面一起处理

初始化单链以后,我们逐次将最下面的结点放在适合的位置,最后跑一遍父结点即可。
我们用ans[]保存当前结点的深度。结点1~n对应于下标0-n-1;
nowdep表示当前可以放结点的最小深度
maxx表示当前深度的最大结点个数
c就是当前深度的操作到了哪一个结点

函数get_dep()表示当前可以得到的最小的深度。极限位置。
这个地方可以处理上面输出NO的情况
如果当前结点所在深度小于等于函数返回来最小深度。代表还需要把当前结点往下移。显然这种情况是不成立的。输出NO即可

用tmp保存还差多少的深度达到满足要求的条件深度和
用条件分支判断一下。如果当前结点的深度-最小的深度还是小于tmp的话,直接把当前结点移动到最小深度的位置。对应于多次操作。否则直接一步到位即可。

最后处理一下父结点
fa[]保存父结点,代码部分是0~n-1保存的。输出的时候++就行了。
二重循环找到每个结点深度相等的地方。并且判断当前结点的儿子个数小于2.否则需要接到同等深度的另外的结点上面。

最后输出就可以啦~

代码部分:

#include <bits/stdc++.h>
#define mst(a, n) memset(a, n, sizeof(a))
using namespace std;
const int N = 5e3 + 10;

int n, d;
int cnt, pos;
int nowdep, c, maxx;
int ans[N];
int ch[N];
int fa[N];

int get_dep()
{
	int ans = nowdep;
	c++;
	if (c == maxx)
	{
		maxx *= 2;
		c = 1;
		nowdep++;
	}
	return ans;
}

int main()
{
	int t;
	cin >> t;
	while (t--)
	{
		ans[0] = 0;
		mst(ch, 0);
		cin >> n >> d;
		cnt = n * (n - 1) / 2;
		for (int i = 1; i < n; i++)
		{
			ans[i] = i;
		}
		if (d > cnt)
		{
			cout << "NO\n";
			continue;
		}
		nowdep = 1;
		c = 1;
		maxx = 2;
		pos = n - 1;
		while (cnt > d)
		{
			int tmp = cnt - d;
			int dep = get_dep();
			if (dep >= pos)
			{
				break;
			}
			if (tmp >= (pos - dep))
			{
				ans[pos] = dep;
				cnt -= (pos - dep);
			}
			else
			{
				ans[pos] -= tmp;
				cnt = d;
			}
			pos--;
		}
		if (cnt > d)
		{
			cout << "NO\n";
		}
		else
		{
			cout << "YES\n";
			for (int i = 1; i < n; i++)
			{
				for (int j = 0; j < n; j++)
				{
					if (ans[j] == ans[i] - 1 && ch[j] < 2)
					{
						ch[j]++;
						fa[i] = j;
						break;
					}
				}
			}
			for (int i = 1; i < n; i++)
			{
				cout << fa[i] + 1 << " ";
			}
			cout << endl;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

娃娃酱斯密酱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值