给你一个含 n
个整数的数组 nums
,其中 nums[i]
在区间 [1, n]
内。请你找出所有在 [1, n]
范围内但没有出现在 nums
中的数字,并以数组的形式返回结果。
示例 1:
输入:nums = [4,3,2,7,8,2,3,1] 输出:[5,6]
示例 2:
输入:nums = [1,1] 输出:[2]
方法一:
public List<Integer> findDisappearedNumbers(int[] nums) {
List<Integer> list = new ArrayList<>();
HashMap<Integer, Integer> map = new HashMap<>();
for (int i=1;i<=nums.length;i++){
map.put(i,0);
}
for (int j=0;j<nums.length;j++){
if(map.containsKey(nums[j])){ // 如果原来数组有在区间的数字 把value设置为1
map.replace(nums[j],1);
}
}
for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
if(entry.getValue().equals(0)) { //获取不在范围内数
list.add(entry.getKey());
}
}
return list;
}
方法二、
方法一:原地修改
思路及解法
我们可以用一个哈希表记录数组 nums数字,由于数字范围均在 [1,n][1,n][1,n] 中,记录数字后我们再利用哈希表检查 [1,n][中的每一个数是否出现,从而找到缺失的数字。
由于数字范围均在 [1,n]中,我们也可以用一个长度为 nnn 的数组来代替哈希表。这一做法的空间复杂度是 O(n)O(n)O(n) 的。我们的目标是优化空间复杂度到 O(1)。
注意到 nums 的长度恰好也为 n,能否让 nums充当哈希表呢?
由于 nums的数字范围均在 [1,n]中,我们可以利用这一范围之外的数字,来表达「是否存在」的含义。
具体来说,遍历 nums,每遇到一个数 xxx,就让 nums[x−1] 增加 n。由于 nums 中所有数均在 [1,n] 中,增加以后,这些数必然大于 n。最后我们遍历 nums,若 nums[i] 未大于 n,就说明没有遇到过数 i+1。这样我们就找到了缺失的数字。
注意,当我们遍历到某个位置时,其中的数可能已经被增加过,因此需要对 n 取模来还原出它本来的值。
class Solution {
public List<Integer> findDisappearedNumbers(int[] nums) {
int n = nums.length;
for (int num : nums) {
int x = (num - 1) % n;
nums[x] += n;
}
List<Integer> ret = new ArrayList<Integer>();
for (int i = 0; i < n; i++) {
if (nums[i] <= n) {
ret.add(i + 1);
}
}
return ret;
}
}
方法三:
public class FindMissingNumber {
public List<Integer> findDisappearedNumbers(int[] nums) {
List<Integer> res = new ArrayList<>();
HashSet<Integer> set = new HashSet<>();
for (int i = 0; i <nums.length; i++) {
set.add(nums[i]);
}
for (int i = 1; i <= nums.length; i++) {
if(set.add(i)){
res.add(i);
}
}
return res;
}
}