题目背景
给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过。给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案。在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。
题目描述
无
输入格式
第一行N、M和T,N为行,M为列,T为障碍总数。第二行起点坐标SX,SY,终点坐标FX,FY。接下来T行,每行为障碍点的坐标。
输出格式
给定起点坐标和终点坐标,问每个方格最多经过1次,从起点坐标到终点坐标的方案总数。
输入输出样例
输入 #1
2 2 1
1 1 2 2
1 2
输出 #1
1
思路:
1、题很简单,DFS深搜遍历所有路径,遇到终点则计数加1,注意同一条路径必须标记避免循环;当回溯时,则消除标记,其他不的路径可能会经过这个点。
归纳(BFS和DFS):
广度优先搜索算法(Breadth-First-Search,缩写为 BFS),是一种利用队列实现的搜索算法。简单来说,其搜索过程和 “湖面丢进一块石头激起层层涟漪” 类似。
深度优先搜索算法(Depth-First-Search,缩写为 DFS),是一种利用递归实现的搜索算法。简单来说,其搜索过程和 “不撞南墙不回头” 类似。
BFS 常用于找单一的最短路线,它的特点是 “搜到就是最优解”;而 DFS 用于找所有解的问题,它的空间效率高,而且找到的不一定是最优解,必须记录并完成整个搜索,故一般情况下,深搜需要非常高效的剪枝(剪枝的概念请百度)。
我的代码:
#include<cstdio>
int n,m,t,sx,sy,fx,fy,mp[10][10] = {0},cnt = 0;
int X[4] = {1,-1,0,0},Y[4] = {0,0,1,-1};
bool flag[10][10] = {false};
bool judge(int x,int y)
{
if (x < 1 || x > n || y < 1 || y > m) return false;
if (mp[x][y] == 1 || flag[x][y] == true) return false;
return true;
}
void DFS(int x,int y)
{
if (x == fx && y == fy)
{
cnt++;
return ;
}
flag[x][y] = true;
for (int i = 0 ;i < 4 ;i++)
{
if (judge(x+X[i],y+Y[i]))
{
DFS(x+X[i],y+Y[i]);
flag[x+X[i]][y+Y[i]] = false;
}
}
}
int main()
{
scanf("%d%d%d",&m,&n,&t);
scanf("%d%d%d%d",&sx,&sy,&fx,&fy);
for (int i = 0 ;i < t ;i++)
{
int x,y;
scanf("%d%d",&x,&y);
mp[x][y] = 1;
}
DFS(sx,sy);
printf("%d",cnt);
return 0;
}