背景
以洛谷一道简单的模板题总结一下解决最短路的算法:
1、Dijkstra邻接矩阵版,邻接链表版;
2、Dijkstra+堆优化;
3、解决图含负权含环的SPFA算法
P4779 【模板】单源最短路径(标准版)
题目描述
给定n 个点,m 条有向边的带非负权图,请你计算从 s出发,到每个点的距离。
数据保证你能从 s出发到任意点。
输入格式
第一行为 n, m, s三个正整数 。 第二行起行,每行三个非负整数u i,v i,w i ,表示从 u到 v有一条权值为w 的有向边。
输出格式
输出一行 n 个空格分隔的非负整数,表示 s 到每个点的距离。
输入输出样例
输入
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
输出
0 2 4 3
我的代码:
一、邻接矩阵版的Dijkstra
1、适用于结点数数不超过1000的图;
2、适用稠密图时;
3、时间复杂度:O(V^2);
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1000;
const int INF = 1000000010;
int n,m,s,u,v,w;
bool flag[maxn] = {false};//用于标记点是否已访问过
int mp[maxn][maxn] = {0},d[maxn];//d[maxn]储存起点到每个点的最短路径
void Dijkstra()
{
fill(d,d + maxn,INF);
d[s] = 0;
for (int i = 1 ;i <= n ;i++)
{
int u = -1,minNum = INF;
for (int j = 1 ;j <= n ;j++)//寻找距离起点最短距离的点
{
if (flag[j] == false && d[j] < minNum)
{
u = j;
minNum = d[j];
}
}
if (u == -1) return;
flag[u] = true;//标记访问的点
for (int j = 1 ;j <= n ;j++)//遍历与该点所有接通的路径
{
if (flag[j] == false && mp[u][j] != 0 && d[u] + mp[u][j] < d[j])
d[j] = d[u] + mp[u][j];
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
for (int i = 0 ;i < m ;i++)
{
scanf("%d%d%d",&u,&v,&w);
mp[u][v] = w;//如果是无向图则再加上mp[v][u] = w;
}
Dijkstra();
for (int i = 1 ;i <= n ;i++)
{
printf("%d",d[i]);
if (i < n) printf(" ");
else printf("\n");
}
return 0;
}
二、邻接链表版的Dijkstra
1、适用于稀疏图;
2、用结构体存储下一个点和边权数据;
3、时间复杂度:O(V^2);
我的代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 100010;
const int INF = 1000000010;
struct Node
{
int v,dis;//v为点,dis为点到v的距离
}node;
int n,m,s,u,d[maxn];
bool flag[maxn] = {false};//标记每个点是否访问过
vector<Node> mp[maxn];
void Dijsktra()
{
fill(d,d + maxn,INF);
d[s] = 0;
for (int i = 1 ;i <= n ;i++)
{
int u = -1,minNum = INF;
for (int j = 1 ;j <= n ;j++)
{
if (flag[j] == false && minNum > d[j])
{
u = j;
minNum = d[j];
}
}
if (u == -1) return;
flag[u] = true;
for (int j = 0 ;j < mp[u].size() ;j++)
{
int v = mp[u][j].v;
if (flag[v] == false && d[u] + mp[u][j].dis < d[v])
d[v] = d[u] + mp[u][j].dis;
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
for (int i = 0 ;i < m ;i++)
{
scanf("%d%d%d",&u,&node.v,&node.dis);
mp[u].push_back(node);
}
Dijsktra();
for (int i = 1 ;i <= n ;i++)
{
printf("%d",d[i]);
if (i < n) printf(" ");
else printf("\n");
}
return 0;
}
上述做法:从复杂度来看,上述简单的Dijkstra主要是外层循环O(V)与内层循环(寻找最小值的d[u]需要O(V) )产生的,时间复杂度为O(V^2),V是结点个数;
因此有了Dijkstra + 堆优化,最简洁的做法是直接使用STL中的优先队列priority_queue,来代替上述的查找过程,这样复杂度可以降为O(VlogV )(关于priority_queue的介绍和使用可以查看这篇博文:priority_queue的用法介绍和简单例题)
三、Dijkstra + 堆优化版
1、使用C++STL的priority_queue,其底层由堆实现;
2、用邻接链表的方法实现;
2、时间复杂度:O(VlogV);
简述:
1、优化Dijkstra的部分是:每轮寻找源点到目前最短距离的点的过程;用优先队列优化的话,我们要单独建立存储点和源点到该点的距离的结构体,用priority_queue设置优先级从低到高,每回把更新后的点筛入优先队列(不用担心优先队列里面是否还有相同的点,因为它会自动把其中最小距离的那个排在前面,当弹出的不是最小距离那个点时,我们直接跳过它),然后优先队列自动把源点到各点最短距离的那个点排在顶部,直到队列为空。
我的代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 100010;
const int INF = 1000000010;
struct Node//存储点,和源点到该点的最短距离
{
int v,d;//v:点的序号,d:源点到该点的最短距离
friend bool operator<(Node n1,Node n2)//重载优先级
{
return n1.d > n2.d;
}
};
struct Edge//存储边权
{
int v,dis;//v:点的序号;dis:上一个点到此点边权
}edge;
int n,m,s,u,d[maxn];//d[maxn]源点到各点的最小距离
bool flag[maxn] = {false};//标记是否已遍历
vector<Edge> mp[maxn];//构建图
void Dijkstra()
{
fill(d,d+maxn,INF);
priority_queue<Node> q;
d[s] = 0;
q.push(Node{s,0});//把源点和其距离存入优先队列
while (!q.empty())
{
Node temp = q.top();
q.pop();
if (flag[temp.v] == true) continue;//最短距离的点在前已经遍历过;当弹出的不是最小距离那个点时,跳过;
flag[temp.v] = true;
for (int i = 0 ;i < mp[temp.v].size() ;i++)
{
int v = mp[temp.v][i].v;
if (flag[v] == false && temp.d + mp[temp.v][i].dis < d[v])
{
d[v] = temp.d + mp[temp.v][i].dis;
q.push(Node{v,d[v]});//将更新的点放入队列
}
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
for (int i = 0 ;i < m ;i++)
{
scanf("%d%d%d",&u,&edge.v,&edge.dis);
mp[u].push_back(edge);
}
Dijkstra();
for (int i = 1 ;i <= n ;i++)
{
printf("%d",d[i]);
if (i < n) printf(" ");
else printf("\n");
}
return 0;
}
三、解决图中含有负权含环的SPFA
1、理解:只有当某个顶点u的d[u]值改变时,从他出发的边的邻接点v的d[v]值才可能改变;
2、用num数组来存储各点入队次数,当某个点入队次数大于总点的个数时,则说明有负环;如果事先知道没有负环则可以不用num数组;
3、此处的flag数组标记是为确定点序号是否在队列中,不是表示是否遍历过‘;
4、时间复杂度O(kE),k为常数,E为图的边数
我的代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 100010;
const int INF = 1000000010;
int n,m,s,u,v,w,num[maxn] = {0},d[maxn];
bool flag[maxn] = {false};
struct Node
{
int v,dis;
}node;
vector<Node> mp[maxn];
bool SPFA()
{
fill(d,d+maxn,INF);
queue<int> q;
q.push(s);
d[s] = 0;
num[s]++;
flag[s] = true;//源点入队标记
while (!q.empty())
{
int temp = q.front();
q.pop();
flag[temp] = false;//出队标记
for (int i = 0 ;i < mp[temp].size() ;i++)
{
int v = mp[temp][i].v;
if (d[v] > d[temp] + mp[temp][i].dis)
{
d[v] = d[temp] + mp[temp][i].dis;
if (flag[v] == false) //如果没在队列里则入队
{
q.push(v);
flag[v] = true;
num[v]++;
if (num[v] >= n) return false;
}
}
}
}
return true;
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
for (int i = 0 ;i < m ;i++)
{
scanf("%d%d%d",&u,&node.v,&node.dis);
mp[u].push_back(node);
}
SPFA();
for (int i = 1 ;i <= n ;i++)
{
printf("%d",d[i]);
if (i < n) printf(" ");
else printf("\n");
}
return 0;
}