超图卷积(hypergraph convolution)的过程类比微信群聊

一、什么是超图?

类比:社交群聊

  • 假设我们有一个社交网络,每个人可以加入不同的微信群聊。在这个类比中,每个人是超图的顶点,而微信群聊则是超图的超边
  • 在普通图中,边是两个人之间的一对一关系,比如你和某个朋友有联系。但是在超图中,超边可以连接多个顶点,就像一个群聊可以有多个参与者。因此,超图的结构更灵活,可以表示更加复杂的关系。

二、超图卷积是什么?

类比:微信群聊中的消息传播
假设你在几个微信群里,群里的每个人可以在群里发布消息。当某个人发消息时,群里的所有人都能接收到这个信息。假设每个人在接收信息后,会对这个信息进行一些处理(例如加入自己的意见或反应),并更新自己的状态。

超图卷积的操作类似于这种“群聊中的消息传播”:

  • 顶点(人):你和群里的其他人是顶点。
  • 超边(群聊):微信群是超边,连接了多个顶点(人)。
  • 消息传播:当某人发消息(即信息),群里的每个人都会根据自己收到的信息和原有的状态,更新自己的状态。

这个信息传播的过程就是超图卷积的一部分。通过微信群聊(超边)连接的人会相互影响,然后他们每个人都会更新自己的信息。

三、为什么要进行卷积?

类比:综合群聊中的所有消息
在多个群里,每个人不仅仅收到来自一个群的消息,他们会综合各个群的信息来更新自己的状态。比如:

  • 如果你同时在家庭群、同学群和工作群里,你就会通过这三个群的信息,更新对当前状况的判断。

在超图卷积中,类似地,每个顶点(人)会从它所属的所有超边(群聊)中收集信息,并通过某种方式融合这些信息,更新自己的特征。

四、形象化的卷积过程

  1. 消息的传播和聚合

    • 假设某个群(超边)里有 5 个人(顶点),这个群中的每个人在每一轮卷积过程中都会收到其他人发出的信息,信息在群内传播。
  2. 信息的处理

    • 每个顶点在接收信息后,会按照一定的规则(例如将消息加权)来处理信息。例如,如果一个群很重要,你可能会更加重视来自这个群的信息。如果某个群只是偶尔聊聊八卦,可能你不会太在意这个群的信息。
  3. 状态更新

    • 收到信息后,每个顶点会基于这些信息和自己原来的状态进行更新。这个过程可以看作是将邻居的信息聚合并重新计算自己的特征值。

五、再总结一下

超图卷积就像是你在多个微信群里,每个群(超边)都是一条连接多个人(顶点)的线,每个群里的消息(信息)都会在群里传播,并被每个成员接收和处理。每个成员接收的信息越多,他的状态就越丰富,越能反映出他周围的环境。

核心点:
  • 顶点:群里的每个人(顶点)是信息的接收者和发出者。
  • 超边:群聊(超边)连接多个顶点,信息在群里传播。
  • 卷积:每个人根据接收到的群里信息更新自己的状态。

这个过程在图神经网络的世界里,就是超图卷积的基本思想。

数学公式表达:

好的!让我们用公式来表示超图卷积的整个过程。以下是通过一些常见的符号和公式来解释超图卷积的过程,帮助你在数学上理解超图卷积的原理。

1. 基本符号说明

  • ( V ):顶点集(节点集合),假设超图中有 ( |V| ) 个顶点。
  • ( E ):超边集(超边集合),假设超图中有 ( |E| ) 个超边。
  • ( H ∈ R ∣ V ∣ × ∣ E ∣ \in \mathbb{R}^{|V| \times |E|} RV×E ):顶点-超边关联矩阵。这个矩阵表示了顶点和超边的连接关系,矩阵 ( H_{ij} = 1 ) 表示顶点 ( v_i ) 属于超边 ( e_j ),否则为 0。
  • ( X ∈ R ∣ V ∣ × d \in \mathbb{R}^{|V| \times d} RV×d ):顶点的特征矩阵,( X_i ) 表示顶点 ( v_i ) 的特征向量,特征维度为 ( d )。
  • ( W ∈ R d × d ′ \in \mathbb{R}^{d \times d'} Rd×d ):可学习的权重矩阵,通过卷积更新特征时使用,用于变换顶点的特征。
  • ( D v ∈ R ∣ V ∣ × ∣ V ∣ D_v \in \mathbb{R}^{|V| \times |V|} DvRV×V ):顶点的度矩阵,对角矩阵,其中 ( D v i i D_{v_{ii}} Dvii ) 是顶点 ( v_i ) 所连接的超边的数量。
  • ( D e ∈ R ∣ E ∣ × ∣ E ∣ D_e \in \mathbb{R}^{|E| \times |E|} DeRE×E ):超边的度矩阵,对角矩阵,其中 ( D e j j D_{e_{jj}} Dejj ) 是超边 ( e_j ) 所连接的顶点数量。

2. 超图卷积的核心公式

超图卷积的主要目标是将顶点的特征通过超边进行聚合和传播,公式可以分为以下几个步骤:

2.1 邻接矩阵的构造

通过顶点-超边关联矩阵 ( H ),可以构造超图的邻接矩阵。这个邻接矩阵用于表示顶点之间通过超边的相互关系。

邻接矩阵的表达式为:

A = H W e H T A = H W_e H^T A=HWeHT

其中,( W_e \in \mathbb{R}^{|E| \times |E|} ) 是超边的权重矩阵,通常设为单位矩阵(即每条超边的权重为 1),所以可以省略 ( W_e )。因此,邻接矩阵简化为:

A = H H T A = H H^T A=HHT

  • ( A ) 是一个 ( |V| \times |V| ) 的矩阵,表示顶点之间通过超边的连接强度。
2.2 邻接矩阵的归一化

为了避免在卷积运算中数值不稳定或顶点度数不均衡的影响,我们对邻接矩阵 ( A ) 进行归一化处理。

归一化公式为:

A ~ = D v − 1 / 2 A D v − 1 / 2 \tilde{A} = D_v^{-1/2} A D_v^{-1/2} A~=Dv1/2ADv1/2

其中 ( D_v ) 是顶点的度矩阵(对角矩阵),可以通过关联矩阵 ( H ) 计算得到:

D v = H H T D_v = H H^T Dv=HHT

这个归一化矩阵 ( A ~ \tilde{A} A~ ) 用于调节不同顶点的影响力,使得信息传播更加平衡。

2.3 卷积操作(特征聚合)

卷积操作将邻接矩阵 ( \tilde{A} ) 应用到顶点的特征矩阵 ( X ) 上,聚合邻居顶点的特征。对于超图卷积,一层卷积的更新规则可以写作:

H ′ = σ ( A ~ X W ) H' = \sigma(\tilde{A} X W) H=σ(A~XW)

其中:

  • ( H ′ H' H ) 是卷积后更新的特征矩阵;
  • ( σ \sigma σ ) 是非线性激活函数,例如 ReLU;
  • ( W ) 是可学习的权重矩阵;
  • ( A ~ X \tilde{A} X A~X ) 是卷积操作中信息的聚合,即将每个顶点的邻居特征加权汇总。

3. 超图卷积的完整公式

将所有步骤结合在一起,超图卷积的完整过程为:

H ′ = σ ( D v − 1 / 2 H W e H T D v − 1 / 2 X W ) H' = \sigma \left( D_v^{-1/2} H W_e H^T D_v^{-1/2} X W \right) H=σ(Dv1/2HWeHTDv1/2XW)

这个公式的含义是:

  1. ( H W e H T H W_e H^T HWeHT ):根据顶点-超边关联矩阵 ( H ) 构造顶点之间的邻接矩阵,表示顶点通过超边的连接强度。
  2. ( D v − 1 / 2 D_v^{-1/2} Dv1/2 ):进行归一化处理,防止高度节点影响过大。
  3. ( X W X W XW ):用权重矩阵 ( W ) 变换节点特征。
  4. ( σ \sigma σ ):使用非线性激活函数,增加模型的表达能力。

4. 卷积过程解释

每一层超图卷积实际上就是邻接矩阵和节点特征矩阵的乘法,通过邻接矩阵传播信息,然后用权重矩阵 ( W ) 和激活函数 ( σ \sigma σ ) 对特征进行更新。经过多层卷积后,每个顶点的特征不仅依赖于自身,还包含了多个超边连接的其他顶点的信息。

总结:

  1. 邻接矩阵 ( A ) 是通过顶点-超边关联矩阵 ( H ) 构造的。
  2. 归一化处理 是为了平衡不同节点的影响力。
  3. 卷积操作 是通过聚合邻居信息来更新节点的特征表示。

超图卷积可以看作是利用超边的复杂连接关系,将多个顶点的信息进行有效地传播和聚合的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值