[论文笔记] 2020-Hypergraph Convolution and Hypergraph Attention

文章提出了超图卷积和超图注意力两种方法,用于处理高阶图结构数据的深度embedding学习。超图卷积定义了在超图上的卷积操作,而超图注意力利用注意力机制增强表示学习。两者都是端到端可训练的,能适应各种非成对关系场景,扩展了图神经网络的适用范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 摘要

    论文链接:https://arxiv.org/pdf/1901.08150.pdf
    代码链接:https://github.com/rusty1s/pytorch_geometric

    大多数算法都假设了感兴趣的对象的成对关系。然而,在许多实际应用程序中,对象之间的关系是高阶的,超出了成对的公式。为了有效地学习高阶图结构数据上的深度embedding,本文在图神经网络家族中引入了两个端到端的可训练算子,即超图卷积和超图注意力超图卷积定义了在超图上执行卷积的基本公式,超图注意力通过利用注意力模块进一步增强了表示学习的能力。有了这两个算子,图神经网络很容易扩展到一个更灵活的模型,并应用于观察到非成对关系的各种应用。

2 介绍

    现在大多数的方法都假设感兴趣的对象之间的关系是成对的。具体来说,在图模型中意味着每条边只连接两个顶点,如图1(a)所示。

图与超图
    然而,在许多实际应用程序中,对象关系比成对关系要复杂得多。例如,在推荐系统中,一个物品可能由多个用户评论。将物品作为顶点,用户的评分作为图的边,每条边可以连接两个以上的顶点。在这种情况下,亲和关系不再是二元的(成对的),而是三元的、四元的或更高阶的。这又回到了超图的概念,这是一种特殊的图模型,它利用超边同时连接多个顶点,如图1(b)所示。遗憾的是,现有的大多数图神经网络变体都不适用于超边编码的高阶结构。

    本文的贡献

    (1)超图卷积在超图中定义了一个基本的卷积算子。它充分利用顶点间的高阶关系和局部聚类结构,实现了信息在顶点间的高效传播。从数学上证明了当非成对关系退化为成对关系时,图卷积是超图卷积的一种特殊情况

    (2)超图注意力进一步施加注意力机制来学习超边的动态连接。然后,在图的任务相关部分进行信息传播和收集,从而生成更具鉴别性的节点嵌入。

    (3)超图卷积和超图注意都是端到端可训练的,只要观察到非成对关系,就可以插入到大多数图神经网络的变体中

3 提出的方法

3.1 超图定义

    假设 G = ( V , E ) G = (V, E) G=(V,E) 是一个有 N N N 个顶点、 M M M 个超边的超图。每个超边 ϵ ∈ E \epsilon \in E ϵE 赋予一个正值权重 W ϵ ϵ W_{\epsilon \epsilon} Wϵϵ ,所有权重存储在一个对角矩阵 W ∈ R M × M W \in \mathbb{R}^{M \times M} WRM×M 中。超图 G G G 用一个关联矩阵 H ∈ R N × M H \in \mathbb{R}^{N \times M} HRN×M 。当一个超边 ϵ ∈ E \epsilon \in E ϵE 一个顶点 v i ∈ V v_i \in V viV 相关联,换句话说, v i v_i vi ϵ \epsilon ϵ 相连,则 H i ϵ = 1 H_{i \epsilon} = 1 Hiϵ=1 ,否则为0。顶点度为

D i i = ∑ ϵ = 1 M W ϵ ϵ H i ϵ D_{ii} = \sum_{\epsilon = 1}^M W_{\epsilon \epsilon} H_{i \epsilon} Dii=ϵ=1MWϵϵHiϵ

超边度为

B ϵ ϵ = ∑ i = 1 N H i ϵ B_{\epsilon \epsilon} = \sum_{i = 1}^N H_{i \epsilon} Bϵϵ=i=1NHiϵ

注意 D ∈ R N × N D \in \mathbb{R}^{N \times N} DRN×N B ∈ R M × M B \in \mathbb{R}^{M \times M} BRM×M 均为对角矩阵。

3.2 超图卷积

    在超图中定义卷积算子的主要障碍是测量两个顶点之间的转移概率,每个顶点的embedding(或特征)可以在图神经网络中传播。为了实现这一点,有两个假设:
    (1)在由一个公共超边连接的顶点之间应该进行更多的传播
    (2)具有更大权重的超边在这种传播中应该有更多的信心

    然后,定义超图卷积的一步为

x i ( l + 1 ) = σ ( ∑ j = 1 N ∑ ϵ = 1 M H i ϵ H j ϵ W ϵ ϵ x j ( l ) P ) x_i^{(l+1)} = \sigma \left(\sum_{j=1}^N \sum_{\epsilon = 1}^M H_{i \epsilon} H_{j \epsilon} W_{\epsilon \epsilon} x_j^{(l)}P \right) xi(l+1)=σ(j=1Nϵ=1MHiϵHjϵWϵϵxj(l)P)

其中, x i ( l ) x_i^{(l)} xi(l)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值