面试经典算法题57-在排序数组中查找元素的第一个和最后一个位置
公众号:阿Q技术站
LeetCode.34
问题描述
给你一个按照非递减顺序排列的整数数组 nums
,和一个目标值 target
。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target
,返回 [-1, -1]
。
你必须设计并实现时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
思路
1. 找第一个位置
- 使用二分查找,初始时将左右指针
left
和right
分别设置为数组的起始和结束位置。 - 在每次循环中,计算中间位置
mid
。 - 如果
nums[mid]
大于或等于目标值target
,将right
移动到mid
位置。 - 否则,将
left
移动到mid + 1
位置。 - 最后检查
left
是否越界以及nums[left]
是否等于target
。
2. 找最后一个位置
- 同样使用二分查找,初始时左右指针分别设置为数组的起始和结束位置。
- 在每次循环中,计算中间位置
mid
。 - 如果
nums[mid]
小于或等于目标值target
,将left
移动到mid + 1
位置。 - 否则,将
right
移动到mid
位置。 - 最后检查
right - 1
是否越界以及nums[right - 1]
是否等于target
。
参考代码
C++
#include <iostream>
#include <vector>
using namespace std;
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
// 初始化返回结果为 [-1, -1]
vector<int> result(2, -1);
// 查找第一个位置
int left = 0, right = nums.size();
while (left < right) {
int mid = (left + right) / 2; // 计算中间位置
if (nums[mid] >= target) { // 如果中间值大于等于目标值,说明目标值可能在左半部分
right = mid; // 调整右边界
} else { // 否则,目标值在右半部分
left = mid + 1; // 调整左边界
}
}
// 检查找到的 left 是否在数组范围内且是否等于目标值
if (left == nums.size() || nums[left] != target) {
return result; // 如果没有找到,返回 [-1, -1]
}
result[0] = left; // 否则,记录第一个位置
// 查找最后一个位置
right = nums.size(); // 重置右边界
while (left < right) {
int mid = (left + right) / 2; // 计算中间位置
if (nums[mid] <= target) { // 如果中间值小于等于目标值,说明目标值可能在右半部分
left = mid + 1; // 调整左边界
} else { // 否则,目标值在左半部分
right = mid; // 调整右边界
}
}
result[1] = left - 1; // 记录最后一个位置
return result; // 返回结果
}
};
int main() {
Solution solution;
vector<int> nums1 = {5, 7, 7, 8, 8, 10};
int target1 = 8;
vector<int> result1 = solution.searchRange(nums1, target1);
cout << "输入: nums = [5,7,7,8,8,10], target = 8" << endl;
cout << "输出: [" << result1[0] << "," << result1[1] << "]" << endl;
vector<int> nums2 = {5, 7, 7, 8, 8, 10};
int target2 = 6;
vector<int> result2 = solution.searchRange(nums2, target2);
cout << "输入: nums = [5,7,7,8,8,10], target = 6" << endl;
cout << "输出: [" << result2[0] << "," << result2[1] << "]" << endl;
vector<int> nums3 = {};
int target3 = 0;
vector<int> result3 = solution.searchRange(nums3, target3);
cout << "输入: nums = [], target = 0" << endl;
cout << "输出: [" << result3[0] << "," << result3[1] << "]" << endl;
return 0;
}
Java
import java.util.Arrays;
public class Solution {
public int[] searchRange(int[] nums, int target) {
// 初始化返回结果为 [-1, -1]
int[] result = new int[]{-1, -1};
// 查找第一个位置
int left = 0, right = nums.length;
while (left < right) {
int mid = (left + right) / 2; // 计算中间位置
if (nums[mid] >= target) { // 如果中间值大于等于目标值,说明目标值可能在左半部分
right = mid; // 调整右边界
} else { // 否则,目标值在右半部分
left = mid + 1; // 调整左边界
}
}
// 检查找到的 left 是否在数组范围内且是否等于目标值
if (left == nums.length || nums[left] != target) {
return result; // 如果没有找到,返回 [-1, -1]
}
result[0] = left; // 否则,记录第一个位置
// 查找最后一个位置
right = nums.length; // 重置右边界
while (left < right) {
int mid = (left + right) / 2; // 计算中间位置
if (nums[mid] <= target) { // 如果中间值小于等于目标值,说明目标值可能在右半部分
left = mid + 1; // 调整左边界
} else { // 否则,目标值在左半部分
right = mid; // 调整右边界
}
}
result[1] = left - 1; // 记录最后一个位置
return result; // 返回结果
}
public static void main(String[] args) {
Solution solution = new Solution();
int[] nums1 = {5, 7, 7, 8, 8, 10};
int target1 = 8;
int[] result1 = solution.searchRange(nums1, target1);
System.out.println("输入: nums = [5,7,7,8,8,10], target = 8");
System.out.println("输出: " + Arrays.toString(result1));
int[] nums2 = {5, 7, 7, 8, 8, 10};
int target2 = 6;
int[] result2 = solution.searchRange(nums2, target2);
System.out.println("输入: nums = [5,7,7,8,8,10], target = 6");
System.out.println("输出: " + Arrays.toString(result2));
int[] nums3 = {};
int target3 = 0;
int[] result3 = solution.searchRange(nums3, target3);
System.out.println("输入: nums = [], target = 0");
System.out.println("输出: " + Arrays.toString(result3));
}
}
Python
from typing import List
class Solution:
def searchRange(self, nums: List[int], target: int) -> List[int]:
# 初始化返回结果为 [-1, -1]
result = [-1, -1]
# 查找第一个位置
left, right = 0, len(nums)
while left < right:
mid = (left + right) // 2 # 计算中间位置
if nums[mid] >= target: # 如果中间值大于等于目标值,说明目标值可能在左半部分
right = mid # 调整右边界
else: # 否则,目标值在右半部分
left = mid + 1 # 调整左边界
# 检查找到的 left 是否在数组范围内且是否等于目标值
if left == len(nums) or nums[left] != target:
return result # 如果没有找到,返回 [-1, -1]
result[0] = left # 否则,记录第一个位置
# 查找最后一个位置
right = len(nums) # 重置右边界
while left < right:
mid = (left + right) // 2 # 计算中间位置
if nums[mid] <= target: # 如果中间值小于等于目标值,说明目标值可能在右半部分
left = mid + 1 # 调整左边界
else: # 否则,目标值在左半部分
right = mid # 调整右边界
result[1] = left - 1 # 记录最后一个位置
return result # 返回结果
# 测试
if __name__ == "__main__":
solution = Solution()
nums1 = [5, 7, 7, 8, 8, 10]
target1 = 8
result1 = solution.searchRange(nums1, target1)
print(f"输入: nums = [5,7,7,8,8,10], target = 8")
print(f"输出: {result1}")
nums2 = [5, 7, 7, 8, 8, 10]
target2 = 6
result2 = solution.searchRange(nums2, target2)
print(f"输入: nums = [5,7,7,8,8,10], target = 6")
print(f"输出: {result2}")
nums3 = []
target3 = 0
result3 = solution.searchRange(nums3, target3)
print(f"输入: nums = [], target = 0")
print(f"输出: {result3}")