最近在看Python人工智能20个小时玩转NLP自然语言处理【黑马程序员】_哔哩哔哩_bilibili
在p37文本处理的基本方法中提到了hanlp的使用
其中有这么一段代码,其目的是使用hanlp进行英文分词
import hanlp
tokenizer = hanlp.utils.rules.tokenize_english
tokenizer('Mr. Hankcs bought hankcs.com for 1.5 thousand dollars.')
正确执行结果应该为:
['Mr.', 'Hankcs', 'bought', 'hankcs.com', 'for', '1.5', 'thousand', 'dollars', '.']
但,我的环境报错AttributeError: module 'hanlp.utils.rules' has no attribute 'tokenize_english'
我看视频评论很多也报这个错误,但网上的解决方案不仅少,而且我试了好多个都没用。主要原因是:hanlp.utils.rules中没有tokenize_english。但视频有条评论提到“from hanlp.utils.english_tokenize import tokenize_english
在https://github.com/hankcs/HanLP/blob/doc-zh/README.md 查看文件结构”虽然试过但也没效果,想着是不是时间太久,hanlp版本(不知道叫版本还是什么!!!!)不一样。而且看连接中的文件结构也找不到相关的tokenize_english,但给了我个启发,直接去hanlp文件里面找,想着会不会是换的位置不一样,果然在C:\ProgramData\Anaconda3\Lib\site-packages\hanlp\utils\lang中发现有个en的文件,其中的english_tokenizer.py里面就有一个tokenize_english。
于是:
from hanlp.utils.lang.en.english_tokenizer import tokenize_english
tokenizer = tokenize_english
tokenizer('Mr. Hankcs bought hankcs.com for 1.5 thousand dollars.')
可行(结果一样,不知道和视频中hanlp.utils.rules.tokenize_english是不是一个东西,应该是!!!)
当然后面直接用这串代码也行,不过想方便一点与视频里面代码同步,可以在hanlp.utils.rules里面加上
import hanlp.utils.lang.en.english_tokenizer
def tokenize_english(text):
return hanlp.utils.lang.en.english_tokenizer.tokenize_english(text)
本人python小白,import导入总感觉有问题,有一点乱,请各位不要笑,大家可以改的简短一点(其实我试了好多自认为没问题的导入方式,结果出现莫名其妙的错误,完全没有规律可言,算了,虽然这个不顺眼,但是符合预期结果就行)!!!!
即可用视频中的代码:
import hanlp
tokenizer = hanlp.utils.rules.tokenize_english
tokenizer('Mr. Hankcs bought hankcs.com for 1.5 thousand dollars.')