每日刷题(八十六)
卡拉兹Callatz猜想
题目描述
对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n + 1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n = 1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n + 1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n = 1?
输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。
输出格式:输出从n计算到1需要的步数。
输入样例:
3
输出样例:
5
详细C++代码如下:
#include<iostream>
using namespace std;
int main()
{
int count = 0;
int number;
cin >> number;
while(number != 1)
{
if(number % 2 == 0)
number /= 2;
else
number = (3 * number + 1) / 2;
count++;
}
cout << count << endl;
return 0;
}
另一种代码
#include<cstdio>
int main()
{
int n, step = 0;
scanf("%d", &n);
while(n != 1)
{
if(n % 2 == 0)
n /= 2;
else
n = (3 * n + 1) / 2;
step++;
}
printf("%d\n", step);
return 0;
}
问题 A: 剩下的树
题目描述
有一个长度为整数L(1<=L<=10000)的马路,可以想象成数轴上长度为L的一个线段,起点是坐标原点,在每个整数坐标点有一棵树,即在0,1,2,…,L共L+1个位置上有L+1棵树。
现在要移走一些树,移走的树的区间用一对数字表示,如 100 200表示移走从100到200之间(包括端点)所有的树。
可能有M(1<=M<=100)个区间,区间之间可能有重叠。现在要求移走所有区间的树之后剩下的树的个数。
我的C++代码如下:
#include<iostream>
using namespace std;
int main()
{
int l, m;
int u, v;
while(cin >> l >> m)
{
if(l == 0 || m == 0)
break;
int a[10000] = {0};
for(int t = 0; t <= l; t++)
{
a[t] = 1; //初始路上的树
}
for(int i = 0; i < m; i++) //每组的数据
{
cin >> u >> v;
for(int j = u; j <= v; j++)
{
a[j] = 0; //严肃处理树
}
}
int num = 0;
for(int k = 0; k <= l; k++)
{
if(a[k] == 1)
num++;
}
cout << num << endl;
}
return 0;
}
运行结果部分如下: