卡拉兹Callatz猜想、问题 A: 剩下的树

每日刷题(八十六)

卡拉兹Callatz猜想

题目描述

对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n + 1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n = 1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n + 1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n = 1?

输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。

输出格式:输出从n计算到1需要的步数。

输入样例:

3

输出样例:

5
详细C++代码如下:

#include<iostream>
using namespace std;

int main()
{
	int count = 0;
	int number;
	
	cin >> number;
	while(number != 1)
	{
		if(number % 2 == 0)
			number /= 2;
		else
			number = (3 * number + 1) / 2;
		count++; 
	}
	cout << count << endl;
	return 0;
 } 

另一种代码

#include<cstdio>

int main()
{
	int n, step = 0;
	scanf("%d", &n);
	while(n != 1)
	{
		if(n % 2 == 0) 
			n /= 2;
		else
			n = (3 * n + 1) / 2;
		step++;
	}
	printf("%d\n", step);
	return 0;
}

问题 A: 剩下的树

题目描述

有一个长度为整数L(1<=L<=10000)的马路,可以想象成数轴上长度为L的一个线段,起点是坐标原点,在每个整数坐标点有一棵树,即在0,1,2,…,L共L+1个位置上有L+1棵树。
现在要移走一些树,移走的树的区间用一对数字表示,如 100 200表示移走从100到200之间(包括端点)所有的树。
可能有M(1<=M<=100)个区间,区间之间可能有重叠。现在要求移走所有区间的树之后剩下的树的个数。
在这里插入图片描述
我的C++代码如下:

#include<iostream>
using namespace std;

int main()
{
	int l, m;
	int u, v;
	while(cin >> l >> m)
	{
		if(l == 0 || m == 0)
			break;
		int a[10000] = {0};
		for(int t = 0; t <= l; t++)
		{
			a[t] = 1;				//初始路上的树 
		}
		for(int i = 0; i < m; i++)		//每组的数据 
		{
			cin >> u >> v;
			for(int j = u; j <= v; j++)
			{
				a[j] = 0;		//严肃处理树 
			}
		}
		int num = 0;
		for(int k = 0; k <= l; k++)
		{
			if(a[k] == 1)
				num++;
		}
		cout << num << endl;
	}
	return 0;
}

运行结果部分如下:
在这里插入图片描述

之后我会持续更新,如果喜欢我的文章,请记得一键三连哦,点赞关注收藏,你的每一个赞每一份关注每一次收藏都将是我前进路上的无限动力 !!!↖(▔▽▔)↗感谢支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值