
计算机视觉论文
文章平均质量分 94
学习
源代码•宸
我们终此一生,就是要摆脱他人的期待,找到真正的自己
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
SLICING AIDED HYPER INFERENCE AND FINE-TUNING FOR SMALL OBJECT DETECTION(切片辅助超推理和微调用于小物体检测)(纯翻译)
检测场景中的小物体和远处的物体是监控应用中的一大挑战。此类物体在图像中由少量像素表示,缺乏足够的细节,因此难以使用传统检测器进行检测。在这项工作中,提出了一个名为切片辅助超推理 (SAHI) 的开源框架,该框架为小物体检测提供了通用的切片辅助推理和微调管道。所提出的技术是通用的,因为它可以应用于任何可用的物体检测器而无需任何微调。原创 2025-02-13 23:06:46 · 1416 阅读 · 0 评论 -
A Normalized Gaussian Wasserstein Distance for Tiny Object Detection(纯翻译)
检测微小物体是一个非常具有挑战性的问题,因为微小物体仅包含几个像素大小。我们证明,由于缺乏外观信息,最先进的检测器无法在微小物体上产生令人满意的结果。我们的主要观察结果是,基于交并比 (IoU) 的指标(例如 IoU 本身及其扩展)对微小物体的位置偏差非常敏感,并且在用于基于锚的检测器时会大大降低检测性能。为了缓解这种情况,我们提出了一种使用 Wasserstein 距离进行微小物体检测的新评估指标。具体而言,我们。原创 2025-02-07 14:27:02 · 1352 阅读 · 0 评论 -
Googlev2Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
训练深度神经网络很复杂,因为在训练过程中,随着前一层参数的变化,每层输入的分布也会发生变化。由于需要较低的学习率和精心的参数初始化,这会减慢训练速度,并且使得训练具有饱和非线性的模型变得非常困难。我们将这种现象称为内部协变量偏移,并通过标准化层输入来解决该问题。我们的方法的优势在于将归一化作为模型架构的一部分,并对每个训练小批量执行归一化。批量归一化允许我们使用更高的学习率并且对初始化不那么小心。它还充当正则化器,在某些情况下消除了 Dropout 的需要。原创 2024-01-17 21:07:09 · 1174 阅读 · 0 评论 -
GoogleNetv1:Going deeper with convolutions更深的卷积神经网络
我们提出了一种代号为 Inception 的深度卷积神经网络架构,它负责在 2014 年 ImageNet 大规模视觉识别挑战赛(ILSVRC14)中为分类和检测设定新的技术水平。该架构的主要特点是提高了网络内部计算资源的利用率。这是通过精心设计的设计实现的,该设计允许增加网络的深度和宽度,同时保持计算预算不变。为了优化质量,架构决策基于 Hebbian 原理和多尺度处理的直觉。我们提交的 ILSVRC14 中使用的一种特殊形式称为GoogLeNet,这是一种 22 层深度网络。原创 2023-12-28 22:58:25 · 1965 阅读 · 0 评论 -
基于深度学习的瓷砖色差分类方法研究——学习笔记(评价:色差的定义太模糊。。。问题描述不清楚,太水了)
瓷砖是人类建筑不可或缺的一种材料,而瓷砖品质最重要的指标之一就是色差,一批瓷砖中色差越小,品级越高。目前企业主要是由熟练工人在特定的光照及距离条件下进行筛查,劳动强度大并且效率低,没有固定的判断标准。因此提出利用基于深度学习算法的视觉检测系统代替人工进行瓷砖色差分类,**首先,经过数字图像处理算法对采集的瓷砖图像进行预处理,将瓷砖本体从背景中分割出来;然后,利用卷积神经网络分别提取具有色差的两类瓷砖特征,通过监督学习实现瓷砖的色差分类;原创 2023-12-25 11:06:36 · 2316 阅读 · 0 评论 -
VGG: Very deep convolutional networks for large-scale image recognition大规模图像识别的深度卷积神经网络
在这项工作中,我们研究了卷积网络深度对其在大规模图像识别设置中的准确性的影响。我们的主要贡献是使用具有非常小的(3×3)卷积滤波器的架构对增加深度的网络进行彻底评估,这表明通过将深度推至 16-19 权重层可以实现对现有技术配置的显着改进。这些发现是我们提交 2014 年 ImageNet 挑战赛的基础,我们的团队分别在定位和分类领域获得了第一名和第二名。我们还表明,我们的表示可以很好地推广到其他数据集,并取得最先进的结果。我们公开了两个性能最好的 ConvNet 模型(VGG16和VGG19。原创 2023-12-24 22:12:54 · 2277 阅读 · 1 评论 -
工业缺陷检测深度学习方法综述——学习笔记(评价:这篇华科大的文章错误百出,学术一点都不严谨,别误人子弟了好吧。。。)
基于深度学习的工业缺陷检测方法可以降低传统人工质检的成本, 提升检测的准确性与效率,因而在智能制造中扮演重要角色, 并逐渐成为计算机视觉领域新兴的研究热点之一. 其被广泛地应用于无人质检、智能巡检、质量控制等各种生产与运维场景中. 本综述旨在对工业缺陷检测的任务定义、难点、挑战、主流方法、公共数据集及评价指标等进行全面归纳, 以帮助研究人员快速了解该领域. 具体而言, 本文首先介绍工业缺陷检测的背景与特点. 接着, 按照实际数据标注情况, 划分出缺陷模式已知、缺陷模式未知与少量缺陷标注 3 种研究任务设置,原创 2023-12-21 17:29:08 · 9239 阅读 · 0 评论 -
CV baseline概览|AlexNet:ImageNet Classification with Deep Convolutional Neural Networks基于深度卷积神经网络的图像分类
我们训练了一个大型深度卷积神经网络,将 ImageNet LSVRC-2010 竞赛中的 120 万张高分辨率图像分类为 1000 个不同的类别。在测试数据上,我们实现了 37.5% 和 17.0% 的 top-1 和 top-5 错误率,这比之前的最先进水平要好得多。该神经网络拥有 6000 万个参数和 650,000 个神经元由五个卷积层(其中一些后面是最大池层)和三个全连接层(最终为 1000 路 softmax)组成。为了加快训练速度,我们使用非饱和神经元和非常高效的 GPU 实现卷积运算。原创 2023-12-02 17:16:31 · 1326 阅读 · 0 评论