判断并求解矩阵的逆——高斯-若尔单消元法

这篇博文主要讲解关于线性代数中矩阵的逆的那些事。

没看过前几篇博客的朋友先去看一看。

首先,方阵(n*n)才有单位矩阵的概念。所以下面提到的都会是矩阵都指方阵。

单位矩阵

矩阵的逆与单位矩阵的概念息息相关。

如单位长度,单位1,等等这些前缀是单位的概念们一样,矩阵里的单位矩阵同样特殊。
简而言之,任何矩阵 A 乘以单位矩阵 I 等于它自身。即
A I = A A I =A AI=A

下面的便是一个三乘三的单位矩阵:

1 0 0 0 1 0 0 0 1   \begin{matrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{matrix} \ 100010001 

有兴趣的小伙伴可以试试矩阵乘法,将单位矩阵与其他同样大小的方阵相乘,看是不是会得到同一个方阵。

总结,单位矩阵即为正对角线上元素为1,其余元素为0的方阵。


矩阵的逆

矩阵的逆的概念为,如果
A B = I ( 单位矩阵 ) AB=I(单位矩阵) AB=I(单位矩阵)
那么,矩阵B是矩阵A的逆。说实话,看到这个概念第一个想到的是倒数(ab=1),虽然书上没写。

有一个特殊的点是矩阵与其逆满足交换律,矩阵乘逆等于单位矩阵,逆乘矩阵也等于单位矩阵。


判断矩阵是否有逆

1 2 3 6 \begin{matrix} 1 & 2 \\ 3 & 6 \end{matrix} 1326
如何快速知道这个矩阵是否有逆呢?

法一 瞪眼 观察法

我们知道,矩阵右乘即为矩阵的列的线性组合

那么,在一些特殊情况下,我们很明显就能看出这个矩阵的列的线性组合能否得到单位矩阵。

比如上面的矩阵,很明显,因为两列成倍数,或者说在同一条直线上(这一点值得细品),他们的线性组合不能覆盖整个空间,而单位矩阵也不在他们所在的直线上,所以没有逆。

这个方法写在这里与其说是用来判断逆,不如说是为了更好帮助你理解线性组合这一概念,并引出了矩阵可能在图像上的这种思路,我想我们后面一定会用到的。

法二 利用单位矩阵

A B = I ( 单位矩阵 ) AB=I(单位矩阵) AB=I(单位矩阵)
首先,矩阵有逆说明存在矩阵B,能使A满足这个关系式。

那么,我们可以推出这个结论:

如果存在 A X = 0 , X 不为非零矩阵 , 那么矩阵 A 没有逆 如果存在AX=0,X不为非零矩阵,那么矩阵A没有逆 如果存在AX=0,X不为非零矩阵,那么矩阵A没有逆

推导逻辑如下:

A X = 0 , 两边同时乘 B → A B X = 0 → I X = 0 → X = 0 AX=0, \\两边同时乘B\rightarrow ABX=0\rightarrow IX=0\rightarrow X=0 AX=0,两边同时乘BABX=0IX=0X=0

可以看到,矩阵A存在逆和AX=0这两个命题矛盾,因此如果能找到矩阵X使AX=0便能证明矩阵A没有逆。


求解矩阵的逆——高斯-若尔单消元法

1 3 2 7 \begin{matrix} 1 & 3 \\ 2 & 7 \end{matrix} 1237

矩阵A如上。

已知矩阵A有逆,要求矩阵的逆,我们第一次想到的应该是如下方法:

[ 1 3 2 7 ] [ a b c d ] = [ 1 0 0 1 ] (1) \left[ \begin{matrix} 1 & 3 \\ 2 & 7 \end{matrix} \right] \left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] = \left[\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] \tag{1} [1237][acbd]=[1001](1)


简言之,解方程,根据这个等式能知道如下方程,原理讲解见矩阵乘法

a + 3 c = 1 2 a + 7 c = 0 b + 3 d = 0 2 b + 7 d = 1 a+3c=1\\2a+7c=0\\b+3d=0\\2b+7d=1 a+3c=12a+7c=0b+3d=02b+7d=1

然而,这种解法的确有些繁琐。于是,我们便引入上篇文章所提的矩阵消元法

先将方程写为如下增广炬阵:

∣ 1 3 1 0 2 7 0 1 ∣ \left| \begin{array}{lc|cc} {1}&{3}&{1}&{0}\\ {2}&{7}&{0}&{1} \end{array} \right| 12371001

进行消元处理后得到如下矩阵:

∣ 1 3 1 0 0 1 − 2 1 ∣ \left| \begin{array}{lc|cc} {1}&{3}&{1}&{0}\\ {0}&{1}&{-2}&{1} \end{array} \right| 10311201

这时,高斯停下了脚步,在这里开始进行消元,回到解方程组的步骤。


然而,后来出现了个名为若尔丹的数学家,说,这里还可以再进一步:

若尔单在高斯停下脚步上的矩阵继续操作,对第一行也进行消元,得到如下矩阵:

∣ 1 0 7 − 3 0 1 − 2 1 ∣ \left| \begin{array}{lc|cc} {1}&{0}&{7}&{-3}\\ {0}&{1}&{-2}&{1} \end{array} \right| 10017231

这时,右边的矩阵就变成了我们所求的矩阵A的逆。

脑袋是不是没转过来?有兴趣的小伙伴可以将这个矩阵乘乘上原矩阵A看是否等于单位矩阵看看。


经验证,我们发现右边的矩阵的确是单位矩阵,下面我们来分析为什么。

根据上篇博文对消元矩阵的解释,消元操作等同于矩阵乘一个矩阵E1,再进行一次消元矩阵将左边部分变为单位矩阵,写成等式如下:

A E 1 E 2 = I A E_1E_2=I AE1E2=I

同样的,因为增广炬阵右边进行了同样的操作,可得:

I E 1 E 2 = E 1 E 2 IE_1E_2=E_1E_2 IE1E2=E1E2

此时,观察这两个等式,我想,不难发现,E1E2即为矩阵的逆。这就是高斯-若尔单消元法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值