线性代数杂谈(2)——逆,转置与置换矩阵

本文章将会围绕着矩阵的逆与转置这两种运算讲述,旨在通过此加深你对矩阵的理解与进一步熟悉这两种运算。

矩阵的逆

A A − 1 = I AA^{-1}=I AA1=I
方阵 A A A(注意:只有方阵才存在逆的概念)乘方阵 A − 1 A^{-1} A1的带单位矩阵 I I I,我们就说矩阵 A − 1 A^{-1} A1是矩阵 A A A的逆。

从另一个更深的角度理解,矩阵的逆即是还原操作,用MIT教授的话比喻,就像穿上袜子后要脱下袜子的操作一样。下面我们来看一个例子:

1 0 0 − 2 1 0 0 0 1   \begin{matrix} 1 & 0 & 0\\ -2 & 1 & 0\\ 0 & 0 & 1 \end{matrix} \ 120010001 

这个矩阵是我们熟悉的消元矩阵,即 E 2 , 1 E_{2,1} E2,1,用以产生(2,1)处的0,具体代表操作是(左乘)将矩阵A的第二行变为-2倍的第一行加上1倍的第二行的线性组合。

那么这个消元矩阵的逆你是否能直接想出来呢?矩阵的逆如下:

1 0 0 2 1 0 0 0 1   \begin{matrix} 1 & 0 & 0\\ 2 & 1 & 0\\ 0 & 0 & 1 \end{matrix} \ 120010001 

可以考虑如下思路:
我们要求的矩阵乘消元矩阵得到的结果是单位矩阵。而消元矩阵的作用是将矩阵A的第二行变为-2倍的第一行加上1倍的第二行,那么要将此结果变回单位矩阵,只需加上二倍的第二行,原矩阵就变回了单位矩阵。

简言之,矩阵的逆即是如此的还原操作。


矩阵的转置

转置可以有几种不同的方法来认识它,这里仅分为代数和图形两种方向。

转置可以直接理解为行与列的交换,即矩阵A中位置 ( i , j ) (i,j) (i,j)的元素,将会出现在其转置矩阵的 ( j , i ) (j,i) (j,i)位置。

从图形上来说,矩阵的转置即是让原矩阵以正对角线为轴进行对称变换。

示例: 1 0 0 2 1 0 0 0 1 \begin{matrix} 1 & 0 & 0\\ 2 & 1 & 0\\ 0 & 0 & 1 \end{matrix} 1200100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值