Description
给出一个数组a,问这个数组中有多少个逆序对。
逆序对定义:若i<j且a[i]>a[j],则(a[i],a[j])是一个逆序对。
如数组3 4 1 2中的逆序对有(3,1),(3,2),(4,1),(4,2),共4个逆序对。
Input
第一行一个整数n,表示元素个数。
第二行n个空格分隔的整数a[i]。
Output
一个数,表示逆序对个数。
Sample Input 1
5
3 3 4 1 2
Sample Output 1
6
Hint
50%的数据 n ≤ 6000.
100%的数据 n ≤ 10^5,0 < a[i] < 2 ^31.
Time Limit
1000MS
Memory Limit
256MB
分析:由题目的数据范围,知若是暴力地逐个搜索逆序对,时间复杂度是o(n^2)的,一定会有超时的测试数据,就不能拿到所有的分数,所以得想时间复杂度更低的办法。而众多排序算法中,归并排序是一种天然的计算逆序对的利器,而且时间复杂度是o(nlogn),在本题不会超时。故要解答本题,只需在对数据实现归并排序的时候,添加逆序对计算的操作就可以了。接下来简单解释为什么归并排序可以计算逆序对。
可以看出来,归并排序实现时顺便算逆序对非常便利,一次就可以算得一大打逆序对,一个个地枚举判断逆序对一次只能算得一个逆序对,利用归并排序的特性计算逆序对明显提速。
参考代码:
#include<stdio.h>
long long int n;//序列长度
int a[100001]={0};//保存原始序列
int temp[100001]={0};//实现归并排序的中间道具
long long int ans=0;//计数逆序对
//采用左闭右闭区间写法,[left,right]
void merge_sort(long long int left,long long int right)
{
if(left==right){//劈序列劈到头了
return;
}
long long int mid=left+((right-left)>>1);
long long int i1,i2,cur;
merge_sort(left,mid);//排左半
merge_sort(mid+1,right);//排右半
//道具准备
for(long long int i=left;i<=right;i++)
{
temp[i]=a[i];
}
//i1左半头指针,i2右半头指针
i1=left,i2=mid+1;
//[left,right]内进行排序,排序结果更新到原始序列a
for(cur=left;cur<=right;cur++)
{
if(i1>mid){//左半取完了,直接拎右半
a[cur]=temp[i2++];
}
else if(i2>right){//右半取完了,直接拎左半
a[cur]=temp[i1++];
}
else if(temp[i1]<=temp[i2]){//左头小,取左头
a[cur]=temp[i1++];
}
else if(temp[i1]>temp[i2]){//右头小,取右头,顺便计逆序对
ans+=mid-i1+1;
a[cur]=temp[i2++];
}
}
return;
}
int main()
{
scanf("%lld",&n);
for(long long int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
merge_sort(1,n);
printf("%lld",ans);
return 0;
}
归并排序易错点:道具数组和目标数组搞混。