AtCoder Regular Contest 133:B - Dividing Subsequence

B - Dividing Subsequence
具体题面信息见上述链接

题目大意

有两个长度为 n n n 的全排列序列, P = p 1 , p 2 . . . p n P = p_1,p_2...p_n P=p1,p2...pn Q = q 1 , q 2 . . . q n Q = q_1,q_2...q_n Q=q1,q2...qn 。从 P , Q P,Q P,Q 中取出长度为 k k k 的子序列,使得子序列 P s u b = a 1.. k P_{sub}=a_{1..k} Psub=a1..k Q s u b = b 1.. k Q_{sub}=b_{1..k} Qsub=b1..k 满足任意 i i i , b i b_i bi a i a_i ai 的整数倍。

题解

本题需要找出两个子序列,并且满足对应位置是倍数的匹配关系。使得子序列最长的匹配思路与最长公共子序列问题比较相似。
全排列最长公共子序列问题求解的动态规划思路是:遍历匹配序列,将匹配序列的元素与模式序列中的元素进行匹配,动态规划数组 f i f_i fi 的含义是以模式序列中第i项为结尾的最长公共子序列的长度。
本题与最长公共子序列问题不同的是:最长公共子序列问题匹配序列中的元素与模式序列中的元素的匹配是唯一的,本题中,这个匹配不唯一,所以我们要考虑匹配序列中的元素与模式序列中的哪一个元素匹配最佳。
我们设序列 P P P是匹配序列, Q Q Q是模式序列。
因为 b i b_i bi a i a_i ai 的整数倍,所以只需要对匹配序列元素 p i p_i pi 的整数倍的模式序列元素 q j q_j qj 进行匹配即可。 如果我们选择将 p i p_i pi q j q_j qj 进行匹配,那么这两个元素位于子序列中的对应位置,以这两个元素为结尾的,子序列的最长长度 f j f_j fj就是位于模式序列元素 j j j之前最长的匹配长度,对于 f j f_j fj 的转移方程为
f j = m a x ( m a x ( f 1.... ( j − 1 ) 树 状 数 组 维 护 ) , f j ) f_j = max(max(f_{1....(j-1)}树状数组维护),f_j) fj=max(max(f1....(j1)),fj)
建议对于每一个匹配序列中的元素与模式序列进行匹配时,可以按照匹配序列位置从后往前进行匹配,防止动态规划的过程出现错误。
其实,本题动态规划的转移方程与全排列最长公共子序列问题基本相同,主要的区别就在于需要将 P P P序列对 Q Q Q序列的多个可能位置都进行匹配,而不是单单一个位置。
这样做时间复杂度也是满足要求的
我的代码

智慧消防安全与应急管理是现代城市安全管理的重要组成部分,随着城市化进程的加速,传统消防安全管理面临着诸多挑战,如消防安全责任制度落实不到位、消防设施日常管理不足、消防警力不足等。这些问题不仅制约了消防安全管理水平的提升,也给城市的安全运行带来了潜在风险。然而,物联网和智慧城市技术的快速发展为解决这些问题提供了新的思路和方法。智慧消防作为物联网和智慧城市技术结合的创新产物,正在成为社会消防安全管理的新趋势。 智慧消防的核心在于通过技术创新实现消防安全管理的智能化和自动化。其主要应用包括物联网消防安全监管平台、城市消防远程监控系统、智慧消防平台等,这些系统利用先进的技术手段,如GPS、GSM、GIS等,实现了对消防设施的实时监控、智能巡检和精准定位。例如,单兵定位方案通过信标点定位和微惯导加蓝牙辅助定位技术,能够精确掌握消防人员的位置信息,从而提高救援效率和安全性。智慧消防不仅提升了消防设施的管理质量,还优化了社会消防安全管理资源的配置,降低了管理成本。此外,智慧消防的应用还弥补了传统消防安全管理中数据处理方式落后、值班制度执行不彻底等问题,赋予了建筑消防设施智能化、自动化的能力。 尽管智慧消防技术在社会消防安全管理工作中的应用已经展现出巨大的潜力和优势,但目前仍处于实践探索阶段。相关职能部门和研究企业需要加大研究开发力度,进一步完善系统的功能与实效性。智慧消防的发展既面临风险,也充满机遇。当前,社会消防安全管理工作中仍存在制度执行不彻底、消防设施日常维护不到位等问题,而智慧消防理念与技术的应用可以有效弥补这些弊端,提高消防安全管理的自动化与智能化水平。随着智慧城市理念的不断发展和实践,智慧消防将成为推动社会消防安全管理工作与城市化进程同步发展的关键力量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值