torch.cuda.is_available()返回false以及在pytorch官网下载遇到没有符合需求的版本的问题

本文讲述了如何在Python环境中测试PyTorch CUDA可用性,遇到CUDA版本不匹配问题,通过更换源并下载1.10.0版本成功解决。重点在于下载和适配CUDA10.2的PyTorch官方资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、测试pytorch CUDA是否可用

1、在cmd的Python环境下,或者在Anaconda Prompt下输入以下命令进行测试:

import torch
print(torch.__version__)
print(torch.cuda.is_available()) #cuda是否可用,返回为True表示可用
torch.cuda.device_count()#返回GPU的数量
torch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值