题目描述
BSNY 在学等差数列和等比数列,当已知前三项时,就可以知道是等差数列还是等比数列。现在给你序列的前三项,这个序列要么是等差序列,要么是等比序列,你能求出第 k 项的值吗。 如果第 k 项的值太大,对 200907 取模。
输入
第一行一个整数 T,表示有 T 组测试数据;
对于每组测试数据,输入前三项 a,b,c,然后输入 k。
对于全部数据,1<=T<=100,1<=a<=b<=c<=109,1<=k<=109
输出
对于每组数据输出第 k 项的值,对 200907 取模。
样例输入
2
1 2 3 5
1 2 4 5
样例输出
5
16
思路:板子题,只需分清等差等比即可
代码:
#include<bits/stdc++.h>
#define ll long long
#define mod 200907
using namespace std;
ll quickpow(ll a, ll b, ll n)
{
if(b == 1)return a;
if(b==0)return 1;
else
{
if (b % 2 == 0)
{
ll t = quickpow(a, b / 2, n)%n;
return t * t%n;
}
else
{
ll t = quickpow(a, b / 2, n)%n;
t = t * t%n;
t = t * a%n;
return t;
}
}
}
int main()
{
ll a,b,c,k,T;
cin>>T;
while(T--)
{
cin>>a>>b>>c>>k;
//等差
if(a+c==2*b)
{
cout<<((k-1)*(b-a)+a)%mod<<endl;
}
//等比
else
{
ll t = b/a;
cout<<(a*quickpow(t,k-1,mod))%mod<<endl;
}
}
return 0;
}