Flink CDC(二)自定义反序列化器

自定义反序列化器

(1)java生成的数据

SourceRecord{
sourcePartition={server=mysql_binlog_source}, 
sourceOffset={ts_sec=1648039948, file=mysql-bin.000064, pos=2881, row=1, server_id=1, event=2}} ConnectRecord{topic='mysql_binlog_source.flink.base_trademark', 
kafkaPartition=null, key=Struct{id=12}, 
keySchema=Schema{mysql_binlog_source.flink.base_trademark.Key:STRUCT},
value=Struct{before=Struct{id=12,tm_name=yyds,logo_url=aaa},
source=Struct{version=1.4.1.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1648039948000,db=flink,table=base_trademark,server_id=1,file=mysql-bin.000064,pos=3018,row=0,thread=26},op=d,ts_ms=1648039948679},
 valueSchema=Schema{mysql_binlog_source.flink.base_trademark.Envelope:STRUCT},
timestamp=null, 
headers=ConnectHeaders(headers=)
}

(2) 自定义序列化器

package com.yyds;

import com.alibaba.fastjson.JSONObject;
import com.alibaba.ververica.cdc.debezium.DebeziumDeserializationSchema;
import io.debezium.data.Envelope;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import org.apache.kafka.connect.source.SourceRecord;

import java.util.List;

/**
 * 自定义序列化器
 */
public class MyDeserialization implements DebeziumDeserializationSchema<String> {



    /**
     *封装为json字符串
     * {
     *     "database":"",
     *     "tableName":"",
     *     "type":"c u d",
     *     "before":{
     *         "":"",
     *         "":"",
     *         "":""
     *     },
     *     "after":{
     *               "":"",
     *               "":"",
     *              "":""
     *     }
     * }
     */
    @Override
    public void deserialize(SourceRecord sourceRecord, Collector<String> collector) throws Exception {

        JSONObject res = new JSONObject();

        // 获取数据库和表名称
        String topic = sourceRecord.topic();
        String[] fields = topic.split("\\.");
        String database = fields[1];
        String tableName = fields[2];



        Struct value = (Struct)sourceRecord.value();
        // 获取before数据
        Struct before = value.getStruct("before");
        JSONObject beforeJson = new JSONObject();
        if(before != null){
            Schema beforeSchema = before.schema();
            List<Field> beforeFields = beforeSchema.fields();
            for (Field field : beforeFields) {
                Object beforeValue = before.get(field);
                beforeJson.put(field.name(),beforeValue);
            }
        }


        // 获取after数据
        Struct after = value.getStruct("after");
        JSONObject afterJson = new JSONObject();
        if(after != null){
            Schema afterSchema = after.schema();
            List<Field> afterFields = afterSchema.fields();
            for (Field field : afterFields) {
                Object afterValue = after.get(field);
                afterJson.put(field.name(),afterValue);
            }
        }

        //获取操作类型 READ DELETE UPDATE CREATE
        Envelope.Operation operation = Envelope.operationFor(sourceRecord);
        String type = operation.toString().toLowerCase();
        if("create".equals(type)){
            type = "insert";
        }

        // 将字段写到json对象中
        res.put("database",database);
        res.put("tableName",tableName);
        res.put("before",beforeJson);
        res.put("after",afterJson);
        res.put("type",type);

        //输出数据
        collector.collect(res.toString());
    }

    @Override
    public TypeInformation<String> getProducedType() {
        return BasicTypeInfo.STRING_TYPE_INFO;
    }
}

(3) 测试

package com.yyds;

import com.alibaba.ververica.cdc.connectors.mysql.MySQLSource;
import com.alibaba.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.alibaba.ververica.cdc.debezium.DebeziumSourceFunction;
import com.alibaba.ververica.cdc.debezium.StringDebeziumDeserializationSchema;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class FlinkCDCWithMyDeserialization {


    public static void main(String[] args) throws Exception {
        System.setProperty("HADOOP_USER_NAME","root");

        // 1、获取执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);



        // 开启 Checkpoint,每隔 5 秒钟做一次 Checkpoint
        env.enableCheckpointing(5000L);

        //指定 CK 的一致性语义
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);

        // 设置超时时间
//        env.getCheckpointConfig().setAlignmentTimeout(10000L);

        env.getCheckpointConfig().setMaxConcurrentCheckpoints(2);

        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(3000L);

        // 重启策略
        //env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3,5000L));

        //设置任务关闭的时候保留最后一次 CK 数据
        env.getCheckpointConfig().enableExternalizedCheckpoints(
                CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION
        );


        // 设置状态后端
        env.setStateBackend(new FsStateBackend("hdfs://centos01:8020/flinkCDC/ck"));


        // 2、通过cdc构建SourceFunction并且读取数据
/*
initial (default): Performs an initial snapshot on the monitored database tables upon first startup, and continue to read the latest binlog.

latest-offset: Never to perform snapshot on the monitored database tables upon first startup, just read from the end of the binlog which means
only have the changes since the connector was started.

timestamp: Never to perform snapshot on the monitored database tables upon first startup, and directly read binlog from the specified timestamp.
The consumer will traverse the binlog from the beginning and ignore change events whose timestamp is smaller than the specified timestamp.

specific-offset: Never to perform snapshot on the monitored database tables upon first startup, and directly read binlog from the specified offset.
*/
        DebeziumSourceFunction<String> mySQLSource = MySQLSource.<String>builder()
                .hostname("centos01")
                .port(3306)
                .username("root")
                .password("123456")
                .databaseList("flink")
                .tableList("flink.base_trademark") //可选配置项,如果不指定该参数,则会读取上一个配置下的所有表的数据  注意:指定的时候需要使用"db.table"的方式
                .deserializer(new MyDeserialization())
                .startupOptions(StartupOptions.initial())
                .build();


        DataStreamSource<String> streamSource = env.addSource(mySQLSource);


        // 3、打印数据
        streamSource.print();


        // 4、启动任务
        env.execute("FlinkCDCWithMyDeserialization");



    }
}

结果:

{"database":"flink","before":{},"after":{"tm_name":"苹果","logo_url":"/static/default.jpg","id":2},"type":"insert","tableName":"base_trademark"}
{"database":"flink","before":{},"after":{"tm_name":"华为","logo_url":"/static/default.jpg","id":3},"type":"insert","tableName":"base_trademark"}
{"database":"flink","before":{},"after":{"tm_name":"TCL","logo_url":"/static/default.jpg","id":4},"type":"insert","tableName":"base_trademark"}

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值