机器学习
文章平均质量分 84
机器学习
undo_try
这个作者很懒,什么都没留下…
展开
-
信息量、熵、KL散度、交叉熵概念理解
信息量、熵、KL散度、交叉熵概念理解原创 2024-05-13 17:07:32 · 1239 阅读 · 0 评论 -
经典机器学习模型(八)梯度提升树GBDT详解
经典机器学习模型(八)梯度提升树GBDT详解原创 2024-04-09 17:13:48 · 4636 阅读 · 1 评论 -
经典机器学习模型(九)EM算法在高斯混合模型中的应用
经典机器学习模型(九)EM算法在高斯混合模型中的应用原创 2024-04-06 23:02:02 · 943 阅读 · 0 评论 -
经典机器学习模型(九)EM算法的推导
经典机器学习模型(九)EM算法的推导原创 2024-03-28 16:04:29 · 434 阅读 · 0 评论 -
经典机器学习模型(二)KNN模型
经典机器学习模型(二)KNN模型(构造kd树实现)原创 2024-03-20 16:08:29 · 1212 阅读 · 0 评论 -
经典机器学习模型(一)感知机模型
经典机器学习模型(一)感知机模型详解(包括对偶形式及其python实现)原创 2024-03-15 18:25:18 · 1159 阅读 · 0 评论 -
利用拉格朗日对偶性求解带约束条件的最优化问题
利用拉格朗日对偶性求解带约束条件的最优化问题原创 2024-03-11 13:10:27 · 1035 阅读 · 0 评论 -
优化算法之最速梯度下降法、牛顿法、拟牛顿法(DFP及BFGS)
优化算法之最速梯度下降法、牛顿法、拟牛顿法(DFP及BFGS)原创 2024-03-04 23:30:10 · 1555 阅读 · 0 评论 -
矩阵的导数运算(理解分子布局、分母布局)
矩阵的导数运算(理解分子布局、分母布局)原创 2024-02-24 23:40:47 · 2435 阅读 · 1 评论 -
传统机器学习(六)集成算法(2)—Adaboost算法原理
集成算法(2)—Adaboost算法原理原创 2023-05-07 16:05:26 · 2631 阅读 · 0 评论 -
传统机器学习(七)支持向量机(2)sklearn中的svm
sklearn中的svm参数详解、案例分析原创 2023-04-26 16:56:21 · 1281 阅读 · 0 评论 -
传统机器学习(七)支持向量机(1)超平面、SVM硬间隔、软间隔模型和损失函数
支持向量机中点到超平面距离公式推导、SVM硬间隔、软间隔模型和损失函数推导及意义详解原创 2023-04-26 10:57:08 · 3356 阅读 · 4 评论 -
传统机器学习(六)集成算法(1)—随机森林算法及案例详解
集成算法的分类,随机森林原理及其简单实现,随机森林预测宽带客户离网,随机森林分析酒店预定取消率影响的因素原创 2023-04-23 23:23:31 · 3690 阅读 · 0 评论 -
传统机器学习(五)决策树算法(一)
决策树算法手动实现及sklearn工具包详解,决策树预剪枝、后剪枝,决策树模型信息提取及部署原创 2023-04-22 11:42:37 · 801 阅读 · 0 评论 -
传统机器学习(二)逻辑回归算法(二)
逻辑回归归一化、过拟合问题,逻辑回归进行逐步回归式建模,提取逻辑回归原始数据的模型系数,逻辑回归多分类问题原创 2023-04-19 17:51:42 · 952 阅读 · 0 评论 -
传统机器学习(二)逻辑回归算法(一)
传统机器学习(二)逻辑回归算法原理,python手动实现以及sklearn工具包使用详解原创 2023-04-18 13:18:39 · 891 阅读 · 0 评论 -
传统机器学习(五)—分类、回归模型的常见评估指标
传统机器学习(五)—分类、回归模型的常见评估指标原创 2023-04-17 17:11:21 · 2037 阅读 · 0 评论 -
传统机器学习(四)聚类算法DBSCAN
聚类算法DBSCAN原创 2023-04-16 13:01:33 · 1468 阅读 · 0 评论 -
传统机器学习(三)聚类算法K-means(一)
聚类算法K-means案例详解原创 2023-04-14 16:44:07 · 2958 阅读 · 0 评论 -
pytorch基础操作(七)暂退法(dropout)
暂退法(dropout)原创 2022-12-26 17:29:24 · 1657 阅读 · 0 评论 -
pytorch基础操作(0)模型训练模板
使用CIFAR10数据集进行模型训练(模板代码)原创 2022-12-19 22:54:40 · 219 阅读 · 0 评论 -
pytorch基础操作(六)利用L2范数(权重衰减)解决线性模型过拟合问题
利用L2范数(权重衰减)解决线性模型过拟合原创 2022-12-17 21:03:44 · 1253 阅读 · 0 评论 -
pytorch基础操作(五)多层感知机的实现
多层感知机原创 2022-12-15 22:59:18 · 1852 阅读 · 0 评论 -
pytorch基础操作(四)softmax回归手动实现以及pytorch的API实现
pytorch基础操作(四)softmax回归手动实现以及pytorch的API实现原创 2022-12-12 22:30:22 · 2336 阅读 · 0 评论 -
pytorch基础操作(三)梯度下降(小批量)计算线性回归
pytorch基础操作(三)梯度下降(小批量)计算线性回归原创 2022-12-08 22:14:31 · 1705 阅读 · 0 评论 -
pytorch基础操作(二) 自动微分
pytorch基础操作(二) 自动微分原创 2022-12-04 22:15:48 · 465 阅读 · 0 评论 -
pytorch基础操作(一)数据操作
pytorch基础操作(一)数据操作原创 2022-11-30 23:08:42 · 357 阅读 · 0 评论 -
吴恩达机器学习(五)逻辑回归练习-二分类练习
1、基础内容(1)公式总结:(2)内容回归:逻辑回归主要是进行二分类和多分类。二分类中,分为线性可分和线性不可分。对于线性回归模型,我们定义的代价函数是所有模型误差的平方和。理论上来说,我们也可以对逻辑回归模型沿用这个定义,但是问题在于,当我们将hθ(x){h_\theta}(x)hθ(x)带入到这样定义了的代价函数中时,我们得到的代价函数将是一个非凸函数(non-convexfunction)。这意味着我们的代价函数有许多局部最小值,这将影响梯度下降算法寻找全局最小值。线性回归的代原创 2022-02-20 13:14:51 · 1067 阅读 · 0 评论 -
机器学习实战(二)决策树-分类树(海洋生物数据集案例)
海洋生物数据集1、创建海洋生物数据集#1、创建数据集import numpy as npimport pandas as pddef createDataSet(): row_data = {'no surfacing':[1,1,1,0,0], 'flippers':[1,1,0,1,1], 'fish':['yes','yes','no','no','no']} dataSet = pd.DataFrame(row_data) return dataS原创 2022-03-19 23:42:16 · 1769 阅读 · 0 评论 -
机器学习实战(一)KNN算法
一、概述k-近邻算法(k-Nearest Neighbour algorithm),又称为KNN算法,是数据挖掘技术中原理最简单的算法。KNN的工作原理:给定一个已知标签类别的训练数据集,输入没有标签的新数据后,在训练数据集中找到与新数据最邻近的k个实例,如果这k个实例的多数属于某个类别,那么新数据就属于这个类别。可以简单理解为:由那些离X最近的k个点来投票决定X归为哪一类。二、利用k-近邻算法分类电影二维图形:扩展多个特征到N维空间(欧几里得距离公式):K近邻算法的步骤:(1) 计原创 2022-03-19 15:15:46 · 2098 阅读 · 0 评论