信息量、熵、KL散度、交叉熵概念理解

信息量、熵、KL散度、交叉熵概念理解

(1) 信息量

  • 信息量是对事件的不确定性的度量。
假设我们听到了两件事,分别如下:

事件A:巴西队进入了世界杯决赛圈。
事件B:中国队进入了世界杯决赛圈。


仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。

究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。

所以当越不可能的事件发生了,我们获取到的信息量就越大。
越可能发生的事件发生了,我们获取到的信息量就越小。
(`事件发生的概率越小,信息量越大;事件发生的概率越大,信息量越小。`

信息量的数学表达式

具体而言,对于一个离散随机事件 x x x,其发生的概率为 p ( x ) p(x) p(x),则该事件所包含的信息量 l ( x ) l(x) l(x) 定义为:
l ( x ) = − l o g ( p ( x ) ) l(x)=-log(p(x)) l(x)=log(p(x))

  • 对数函数可以采用任意底数,常见的有自然对数(以 e 为底)和常用对数(以 2为底)。
  • 使用常用对数2时,信息量的单位是比特(bit)
  • 使用自然对数e时,单位是纳特(nat)

(2) 熵

  • 信息量可以理解为一个事件由不确定变为确定,它的难度有多大。

  • 熵可以理解为一个系统由不确定变为确定,它的难度有多大。

熵定义为对信息量 f ( p i ) f(pi) f(pi)求期望,熵越大,表示这个系统的不确定性越高。对所有可能发生的事件,把这个信息量求出来,然后和事件发生可能性相乘,最后全部加起来。

设X是一个离散型随机变量,分布律为 p ( x ) = p ( X = x ) p(x) = p(X = x) p(x)=p(X=x) x ∈ X x∈X xX为取值空间集合 ,则随机变量X的熵 H ( X ) H(X) H(X) 定义为:
H ( X ) = − ∑ x ∈ X p ( x ) l o g ( p ( x ) ) H(X) = -\sum_{x∈ X} p(x)log(p(x)) H(X)=xXp(x)log(p(x))

  • 熵的单位
    使用常用对数2时,熵的单位是比特(bit);
    使用自然对数e时,熵的单位是纳特(nat)。
假设我们有一个离散随机变量 X,它有四个可能的结果:x1、x2、x3 和 x4,对应的概率分别为 0.1、0.2、0.3 和 0.4。我们要计算这个随机变量X的熵。

# 首先计算每个结果的信息量。根据信息量的定义,我们有
I(x1) = -log(0.1)
I(x2) = -log(0.2)
I(x3) = -log(0.3)
I(x4) = -log(0.4)

# 然后,我们将这些信息量与对应的概率相乘,并将结果相加,得到随机变量 X 的熵
H(X) = 0.1 * I(x1) + 0.2 * I(x2) + 0.3 * I(x3) + 0.4 * I(x4)

(3) 相对熵(KL散度)

相对熵,也叫KL散度,是一种衡量两个分布差异的方法。假设现在同一个随机变量 X ,有P、Q两个单独的概率分布(如下图),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异。

在这里插入图片描述

如何定义相对熵来衡量这两个分布的差异呢?
D K L ( P ∣ ∣ Q ) = ∑ x ∈ X p x ( l Q ( q x ) − l P ( p x ) ) 【对于每一个可能的 x , 计算信息量之差】 = ∑ x ∈ X p x ( − l o g ( q x ) − ( − l o g ( p x ) ) = ∑ x ∈ X p x ( − l o g ( q x ) ) − ∑ x ∈ X p x ( − l o g ( p x ) ) 【称为相对熵】 = ∑ x ∈ X p x l o g ( p x q x ) D_{KL}(P||Q)=\sum_{x∈X}p_x(l_Q(q_x)-l_P(p_x)) 【对于每一个可能的x,计算信息量之差】\\ =\sum_{x∈X}p_x(-log(q_x)-(-log(p_x)) \\ =\sum_{x∈X}p_x(-log(q_x))-\sum_{x∈X}p_x(-log(p_x)) 【称为相对熵】\\ =\sum_{x∈X}p_xlog(\frac{p_x}{q_x}) DKL(P∣∣Q)=xXpx(lQ(qx)lP(px))【对于每一个可能的x,计算信息量之差】=xXpx(log(qx)(log(px))=xXpx(log(qx))xXpx(log(px))【称为相对熵】=xXpxlog(qxpx)

  • D K L ( P ∣ ∣ Q ) = ∑ x ∈ X p x l o g ( p x q x ) D_{KL}(P||Q)=\sum_{x∈X}p_xlog(\frac{p_x}{q_x}) DKL(P∣∣Q)=xXpxlog(qxpx),KL散度的值越小,Q分布越接近P分布;
  • 根据吉布斯不等式,KL散度的值一定是大于等于0的;
  • KL散度不能用来衡量两个分布的距离,其原因在于KL散度不是对称的,即 D K L ( P ∣ ∣ Q ) 不等于 D K L ( Q ∣ ∣ P ) D_{KL}(P||Q)不等于D_{KL}(Q||P) DKL(P∣∣Q)不等于DKL(Q∣∣P)
  • KL散度通俗解释(英文原文):Kullback-Leibler Divergence Explained
  • KL散度通俗解释(翻译版本):KL散度介绍

(4) 交叉熵

我们一般会从极大似然估计角度,来推导交叉熵公式。

二分类交叉熵公式推导:

在这里插入图片描述

为了计算方便,我们对似然函数求对数,并加负号,这样就从求解使似然函数最大时的参数,变为求解使交叉熵最小时的参数。
J = − 1 n ∑ i = 1 n ( y i l o g y i ^ + ( 1 − y i ) l o g ( 1 − y i ^ ) ) 在机器学习或深度学习中,其中 n 为批量样本数 J=-\frac{1}{n}\sum_{i=1}^n(y_ilog \hat{y_i}+ (1-y_i)log(1-\hat{y_i})) \\ 在机器学习或深度学习中,其中n为批量样本数 J=n1i=1n(yilogyi^+(1yi)log(1yi^))在机器学习或深度学习中,其中n为批量样本数
多分类交叉熵公式:
对于多项分布,我们假设有 m 个类别,模型预测各个类别的分数分别为 ( y i 1 ^ , y i 2 ^ , . . . , y i m ^ ) ,则有: p ( y i = 1 ∣ x i , w ) = y i 1 ^ p ( y i = 2 ∣ x i , w ) = y i 2 ^ . . . . . . p ( y i = c ∣ x i , w ) = y i c ^ . . . . . . p ( y i = m ∣ x i , w ) = y i m ^ 同样,合并上述公式: p ( y i ∣ x i , w ) = y i 1 ^ y i 1 y i 2 ^ y i 2 . . . y i m ^ y i m = ∏ c = 1 m y i c ^ y i c 对于 n 次观察结果 ( 批量样本 n ) ,则有似然函数: L ( w ∣ X , Y ) = f ( Y = y 1 , . . . , y n ∣ X = x 1 , . . . , x n , w ) = ∏ i = 1 n ∏ c = 1 m y i c ^ y i c 同样,为了计算方便,我们对似然函数求对数,并加负号: J = − 1 n l o g L ( w ∣ X , Y ) = − 1 n ∑ i = 1 n ∑ c = 1 m y i c l o g y i c ^ 对于多项分布,我们假设有m个类别,模型预测各个类别的分数分别为(\hat{y_{i1}},\hat{y_{i2}},...,\hat{y_{im}}),则有:\\ p(y_i=1|x_i,w)=\hat{y_{i1}}\\ p(y_i=2|x_i,w)=\hat{y_{i2}}\\ ......\\ p(y_i=c|x_i,w)=\hat{y_{ic}}\\ ......\\ p(y_i=m|x_i,w)=\hat{y_{im}}\\ 同样,合并上述公式:\\ p(y_i|x_i,w)=\hat{y_{i1}}^{y_{i1}}\hat{y_{i2}}^{y_{i2}}...\hat{y_{im}}^{y_{im}} =\prod\limits_{c=1}^{m}\hat{y_{ic}}^{y_{ic}} \\ 对于n次观察结果(批量样本n),则有似然函数:\\ L(w|X,Y)=f(Y=y_1,...,y_n|X=x_1,...,x_n,w)=\prod\limits_{i=1}^{n}\prod\limits_{c=1}^{m}\hat{y_{ic}}^{y_{ic}}\\ 同样,为了计算方便,我们对似然函数求对数,并加负号:\\ J=-\frac{1}{n}logL(w|X, Y)=-\frac{1}{n}\sum\limits_{i=1}^n\sum\limits_{c=1}^my_{ic}log\hat{y_{ic}} 对于多项分布,我们假设有m个类别,模型预测各个类别的分数分别为(yi1^,yi2^,...,yim^),则有:p(yi=1∣xi,w)=yi1^p(yi=2∣xi,w)=yi2^......p(yi=cxi,w)=yic^......p(yi=mxi,w)=yim^同样,合并上述公式:p(yixi,w)=yi1^yi1yi2^yi2...yim^yim=c=1myic^yic对于n次观察结果(批量样本n),则有似然函数:L(wX,Y)=f(Y=y1,...,ynX=x1,...,xn,w)=i=1nc=1myic^yic同样,为了计算方便,我们对似然函数求对数,并加负号:J=n1logL(wX,Y)=n1i=1nc=1myiclogyic^
通过上述推导,我们就确定了多分类的交叉熵损失函数:
l o s s = − 1 n ∑ i = 1 n ∑ c = 1 m y i c l o g y i c ^ n 为批量样本, m 为分类数 loss=-\frac{1}{n}\sum\limits_{i=1}^n\sum\limits_{c=1}^my_{ic}log\hat{y_{ic}} \\ n为批量样本,m为分类数 loss=n1i=1nc=1myiclogyic^n为批量样本,m为分类数
m = 2 m=2 m=2时候,就是二分类交叉熵损失函数:
l o s s = − 1 n ∑ i = 1 n ∑ c = 1 2 y i c l o g y i c ^ = − 1 n ∑ i = 1 n ( y i 1 l o g y i 1 ^ + y i 2 l o g y i 2 ^ ) 令 y i 1 = y i ,那么 y i 2 = 1 − y i l o s s = − 1 n ∑ i = 1 n ( y i l o g y i ^ + ( 1 − y i ) l o g ( 1 − y i ^ ) ) n 为批量样本,和之前推导一样 loss=-\frac{1}{n}\sum\limits_{i=1}^n\sum\limits_{c=1}^2y_{ic}log\hat{y_{ic}} \\ =-\frac{1}{n}\sum\limits_{i=1}^n(y_{i1}log\hat{y_{i1}}+y_{i2}log\hat{y_{i2}})\\ 令y_{i1}=y_{i},那么y_{i2}=1-y_{i}\\ loss=-\frac{1}{n}\sum\limits_{i=1}^n(y_{i}log\hat{y_{i}}+(1-y_{i})log(1-\hat{y_i}))\\ n为批量样本,和之前推导一样 loss=n1i=1nc=12yiclogyic^=n1i=1n(yi1logyi1^+yi2logyi2^)yi1=yi,那么yi2=1yiloss=n1i=1n(yilogyi^+(1yi)log(1yi^))n为批量样本,和之前推导一样

我们现在从相对熵的角度,来看待交叉熵。那么,相对熵和交叉熵的有什么关系呢?
D K L ( P ∣ ∣ Q ) = ∑ x ∈ X p x ( − l o g ( q x ) − ( − l o g ( p x ) ) = ∑ x ∈ X p x ( − l o g ( q x ) ) − ∑ x ∈ X p x ( − l o g ( p x ) ) = ∑ x ∈ X p x ( l o g ( p x ) ) − ∑ x ∈ X p x ( l o g ( q x ) ) 令 H ( p , q ) = − ∑ x ∈ X p x ( l o g ( q x ) ) ,那么 D K L ( P ∣ ∣ Q ) = H ( p ) + H ( p , q ) D_{KL}(P||Q)=\sum_{x∈X}p_x(-log(q_x)-(-log(p_x)) \\ =\sum_{x∈X}p_x(-log(q_x))-\sum_{x∈X}p_x(-log(p_x)) \\ =\sum_{x∈X}p_x(log(p_x))-\sum_{x∈X}p_x(log(q_x)) \\ 令H(p,q)=-\sum_{x∈X}p_x(log(q_x)),那么\\ D_{KL}(P||Q)=H(p)+H(p,q) \\ DKL(P∣∣Q)=xXpx(log(qx)(log(px))=xXpx(log(qx))xXpx(log(px))=xXpx(log(px))xXpx(log(qx))H(p,q)=xXpx(log(qx)),那么DKL(P∣∣Q)=H(p)+H(p,q)

  • 在机器学习中,训练数据的分布通常是固定的,因此 H ( p ) H(p) H(p)是一个常数,不影响模型的训练过程。我们的目标是使模型预测的概率分布q尽可能接近真实分布p,其实就是最小化交叉熵 H ( p , q ) H(p,q) H(p,q)
  • 所以我们把交叉熵损失函数定义为:

H ( p , q ) = − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) H(p,q)=-\sum\limits_{i=1}^np(x_i)log(q(x_i)) H(p,q)=i=1np(xi)log(q(xi))

总结如下:

在这里插入图片描述

通俗讲解这几个概念的视频,可以参考:

“交叉熵”如何做损失函数?打包理解“信息量”、“比特”、“熵”、“KL散度”、“交叉熵”

  • 30
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
KL度和交叉是在机器学习中用于比较两个概率分布之间相似性的概念,但在一些方面它们也有所不同。KL度用于衡量两个概率分布之间的差异,而交叉则用于衡量模型预测和真实标签之间的差异。 具体来说,KL度衡量的是从一个概率分布到另一个概率分布的信息损失。它是非对称的,即KL(P||Q)不等于KL(Q||P)。KL度的值越小,表示两个概率分布越相似。 交叉是在给定真实标签的情况下,衡量模型预测与真实标签之间的差异。它是对数损失函数的一种形式,用于评估模型的性能。交叉的值越小,表示模型的预测越接近真实标签。 总结来说,KL度用于比较两个概率分布之间的差异,而交叉用于衡量模型预测和真实标签之间的差异。它们在使用和应用上有所区别,但都在机器学习中有广泛的应用。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *3* [KL度和交叉的对比介绍](https://blog.csdn.net/qq_33431368/article/details/130397363)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [KL度和交叉](https://blog.csdn.net/Allenalex/article/details/103443060)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值