二叉树中已知前序和中序,画图求后序(超简单!!!)

二叉树中已知前序和中序,画图求后序(超简单)

1.了解什么是前序遍历,中序遍历,后序遍历?

在这里插入图片描述

其实这个顺序就是表示根节点所在的位置,左子树和右子树的顺序是固定的,都是先左后右。
所以根结点与左右子树的关系就构成了三种顺序:

  1. 若在左右子树的前面被访问叫做前序,其顺序为根左右
  2. 若在左右子树的中间被访问叫做中序,其顺序为左根右
  3. 若在左右子树的后面被访问叫做后序,其顺序为左右根
    在这里插入图片描述
    如上图,
    前序遍历为:ABDGCEHIF
    中序遍历为:DGBAHEICF
    后序遍历为:GDBHIEFCA

2. 看题实战

已经知道在二叉树中:
前序序列: A,B,C,D,E,F,G,H, l, J
中序序列: C,B,A,F,E,D, l, H,J,G
求后序遍历:------

2. 解题思路

最好的办法是,根据已经知道的前序和中序序列,画出二叉树即可根据后序遍历的口诀:左右根,求出后序遍历
那么问题来了,怎么画出二叉树的图呢??
其实简单,因为左右子树的中间被访问叫做中序,其顺序为左根右
我们将中序序列作为切入点,化为左右子节点,具体怎么做呢?
我们知道前序遍历时,都是先遍历根子节点,而中序遍历时先遍历左子节点的,所以左子节点一定是在根节点的左边,右子节点在根节点的右边,如下图
**第一步:**根据前序遍历的根节点1(即根节点A)划分中序遍历的左右子节点
在这里插入图片描述
第二步:,根据前序遍历的根节点2(即根节点B)划分中序遍历的左右子节点
在这里插入图片描述
第三步: 根据前序遍历的根节点3(即根节点C)划分中序遍历的左右子节点,此时中序序列的C无左右子节点,B是它的父节点,如上图所示

第四步: 根据前序遍历的根节点4(即根节点D)划分中序遍历的左右子节点, 操作同上,如下图所示
在这里插入图片描述
第五步: 根据前序遍历的根节点5(即根节点E)划分中序遍历的左右子节点, 操作同上,如下图所示
在这里插入图片描述

第六步: 根据前序遍历的根节点6(即根节点F)划分中序遍历的左右子节点, 操作同上,如上图所示

第六步: 根据前序遍历的根节点7(即根节点G)划分中序遍历的左右子节点, 操作同上,如下图所示
在这里插入图片描述

重复以上步奏,得到最终的二叉树图如下
在这里插入图片描述
然后根据后序遍历:左右根
遍历得到:CBFEIJHGDA

理解了吗??是不是很简单,画图不易,觉得写得不错的,给赞和关注哦在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

根据二叉树前序遍历遍历可以唯一确定一棵二叉树,因此可以通过这两个遍历列构建出这棵二叉树,然后再进行后序遍历。 具体步骤如下: 1. 根据前序遍历列确定根节点,假设为root。 2. 在中遍历列中找到根节点root的位置,将中遍历列分为左子树右子树两部分,分别对左右子树递归进行步骤1步骤2,直到列为空或者只有一个节点。 3. 对于每个节点,先遍历它的左子树,再遍历它的右子树,最后遍历它本身,即可得到后序遍历列。 下面是Python代码实现: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def buildTree(preorder, inorder): if not preorder or not inorder: return None root_val = preorder[0] root = TreeNode(root_val) root_index = inorder.index(root_val) root.left = buildTree(preorder[1:root_index+1], inorder[:root_index]) root.right = buildTree(preorder[root_index+1:], inorder[root_index+1:]) return root def postorderTraversal(root): if not root: return [] stack = [root] res = [] while stack: node = stack.pop() res.append(node.val) if node.left: stack.append(node.left) if node.right: stack.append(node.right) return res[::-1] preorder = [1, 2, 4, 5, 3, 6, 7] inorder = [4, 2, 5, 1, 6, 3, 7] root = buildTree(preorder, inorder) postorder = postorderTraversal(root) print(postorder) # 输出:[4, 5, 2, 6, 7, 3, 1] ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值