常见泰勒展开式

常见泰勒展开式
e x = 1 + x + 1 2 ! x 2 + ⋅ ⋅ ⋅ + 1 n ! x n + ⋅ ⋅ ⋅ , x ϵ ( − ∞ , + ∞ ) e^{x}=1+x+\frac{1}{2!}x^{2}+···+\frac{1}{n!}x^{n}+···,x\epsilon (-\infty,+\infty) ex=1+x+2!1x2+⋅⋅⋅+n!1xn+⋅⋅⋅,xϵ(,+)
sin ⁡ x = x − 1 3 ! x 3 + 1 5 ! x 5 − ⋅ ⋅ ⋅ + ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 + ⋅ ⋅ ⋅ , x ϵ ( − ∞ , + ∞ ) \sin x=x-\frac{1}{3!}x^{3}+\frac{1}{5!}x^{5}-···+\frac{(-1)^{n}}{(2n+1)!}x^{2n+1}+···,x\epsilon (-\infty,+\infty) sinx=x3!1x3+5!1x5⋅⋅⋅+(2n+1)!(1)nx2n+1+⋅⋅⋅,xϵ(,+)
cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 − ⋅ ⋅ ⋅ + ( − 1 ) n ( 2 n ) ! x 2 n + ⋅ ⋅ ⋅ , x ϵ ( − ∞ , + ∞ ) \cos x=1-\frac{1}{2!}x^{2}+\frac{1}{4!}x^{4}-···+\frac{(-1)^{n}}{(2n)!}x^{2n}+···,x\epsilon(-\infty,+\infty) cosx=12!1x2+4!1x4⋅⋅⋅+(2n)!(1)nx2n+⋅⋅⋅,xϵ(,+)
tan ⁡ x = x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + ⋅ ⋅ ⋅ , x ϵ ( − π 2 , π 2 ) \tan x=x+\frac{1}{3}x^{3}+\frac{2}{15}x^{5}+\frac{17}{315}x^{7}+···,x\epsilon (-\frac{\pi}{2},\frac{\pi}{2}) tanx=x+31x3+152x5+31517x7+⋅⋅⋅,xϵ(2π,2π)
arctan ⁡ x = x − 1 3 x 3 + 1 5 x 5 − ⋅ ⋅ ⋅ + ( − 1 ) n ( 2 n + 1 ) x 2 n + 1 + ⋅ ⋅ ⋅ , x ϵ [ − 1 , 1 ] \arctan x=x-\frac{1}{3}x^{3}+\frac{1}{5}x^{5}-···+\frac{(-1)^{n}}{(2n+1)}x^{2n+1}+···,x\epsilon [-1,1] arctanx=x31x3+51x5⋅⋅⋅+(2n+1)(1)nx2n+1+⋅⋅⋅,xϵ[1,1]
arcsin ⁡ x = x + 1 6 x 3 + 3 40 x 5 + 5 112 x 7 + ⋅ ⋅ ⋅ + ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 + ⋅ ⋅ ⋅ , x ϵ ( − 1 , 1 ) \arcsin x=x+\frac{1}{6}x^{3}+\frac{3}{40}x^{5}+\frac{5}{112}x^{7}+···+\frac{(2n)!}{4^{n}(n!)^{2}(2n+1)}x^{2n+1}+···,x\epsilon(-1,1) arcsinx=x+61x3+403x5+1125x7+⋅⋅⋅+4n(n!)2(2n+1)(2n)!x2n+1+⋅⋅⋅,xϵ(1,1)
ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋅ ⋅ ⋅ + ( − 1 ) n n + 1 x n + 1 + ⋅ ⋅ ⋅ , x ϵ ( − 1 , 1 ] \ln(1+x)=x-\frac{1}{2}x^{2}+\frac{1}{3}x^{3}-···+\frac{(-1)^{n}}{n+1}x^{n+1}+···,x\epsilon(-1,1] ln(1+x)=x21x2+31x3⋅⋅⋅+n+1(1)nxn+1+⋅⋅⋅,xϵ(1,1]
1 1 − x = 1 + x + x 2 + x 3 + ⋅ ⋅ ⋅ + x n + ⋅ ⋅ ⋅ , x ϵ ( − 1 , 1 ) \frac{1}{1-x}=1+x+x^{2}+x^{3}+···+x^{n}+···,x\epsilon(-1,1) 1x1=1+x+x2+x3+⋅⋅⋅+xn+⋅⋅⋅,xϵ(1,1)
1 1 + x = 1 − x + x 2 − x 3 + ⋅ ⋅ ⋅ + ( − 1 ) n x n + ⋅ ⋅ ⋅ , x ϵ ( − 1 , 1 ) \frac{1}{1+x}=1-x+x^{2}-x^{3}+···+(-1)^{n}x^{n}+···,x\epsilon(-1,1) 1+x1=1x+x2x3+⋅⋅⋅+(1)nxn+⋅⋅⋅,xϵ(1,1)
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋅ ⋅ ⋅ + α ( α − 1 ) ⋅ ⋅ ⋅ ( α − n + 1 ) n ! x n + ⋅ ⋅ ⋅ , x ϵ ( − 1 , 1 ) (1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^{2}+···+\frac{\alpha(\alpha-1)···(\alpha-n+1)}{n!}x^{n}+···,x\epsilon(-1,1) (1+x)α=1+αx+2!α(α1)x2+⋅⋅⋅+n!α(α1)⋅⋅⋅(αn+1)xn+⋅⋅⋅,xϵ(1,1)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值