矩阵

矩阵的运算

加减、数乘

乘法的运算规律

  1. A ( B C ) = ( A B ) C A(BC)=(AB)C A(BC)=(AB)C
  2. A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC
    位置不可变,但是乘法顺序可以改变

方阵的正整数幂

  1. ( A B ) k ≠ A k B k (AB)^k\neq A^kB^k (AB)k=AkBk
    仅当 A B = B A AB=BA AB=BA等号成立

矩阵的转置

  1. ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
  2. ( k A ) T = k A T (kA)^T =kA^T (kA)T=kAT
  3. ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

对称阵与反对称阵

  1. 对称阵: A T = A A^T=A AT=A,即 a i j = a j i a_{ij}=a_{ji} aij=aji
  2. 反对称阵: A T = − A A^T=-A AT=A,即 a i j = − a j i 且 a i i = 0 a_{ij}=-a_{ji}且a_{ii}=0 aij=ajiaii=0
  3. 任意方阵都可拆解为对称阵和非对称阵的和
    A = A + A T 2 + A − A T 2 A=\frac{A+A^T}{2}+\frac{A-A^T}{2} A=2A+AT+2AAT

方阵的行列式

  1. 奇异方阵:方阵的行列式为0
  2. 方阵的行列式的特殊性质: ∣ A B ∣ = ∣ A ∣ ∣ B ∣ \left|AB\right|=\left|A\right|\left|B\right| AB=AB

伴随矩阵

  1. 代数余子式的定义:
    将矩阵 A A A的元素 a i j a_{ij} aij所在的第i行第j列元素划去后,剩余的各元素按原来的排列顺序组成的n-1阶矩阵所确定的行列式称为元素 a i j a_{ij} aij的余子式,记为 M i j M_{ij} Mij,称 A i j = ( − 1 ) ( i + j ) M i j A_{ij}=(-1)^{(i+j)}M^{ij} Aij=(1)(i+j)Mij为元素 a i j a_{ij} aij的代数余子式
  2. 伴随矩阵的定义:
    方阵 A A A的各元素的代数余子式 A i j A_{ij} Aij所构成的如下伴随矩阵矩阵 A ∗ A^* A
    在这里插入图片描述
    伴随矩阵的定义非常复杂
  3. 伴随矩阵的重要性质: A ∗ A = A A ∗ = ∣ A ∣ E A^*A=AA^*=\left|A\right|E AA=AA=AE
  4. 伴随矩阵的作用在于求逆矩阵

矩阵的初等变换

  1. 三种初等变换:对换某两行(列)的位置、非零常数k乘以某一行(列)、将矩阵的第j行(列)乘以非零常数k加到第i行(列)上去
  2. 初等变换的作用:简化矩阵成梯形阵

矩阵的等价

  1. 定义:A可经过有限次初等变换得到B,则称A与B等价。
  2. 等价标准形:经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型。
  3. 定理:任何一个矩阵都可以通过初等变换变成一个等价标准形。等价标准形中1的元素个数就是矩阵的秩

矩阵的秩

  1. k阶子式的定义:在 A m × n A_{m\times n} Am×n中任取k行k列,其相交处的 k 2 k^2 k2个元素按照原来位置排成的k阶行列式就是k阶子式。
  2. 矩阵的秩的定义:k阶子式的最高阶数称为矩阵A的秩,记做 r ( A ) r(A) r(A)
  3. 经过初等变换后矩阵的秩不变,梯形阵的秩等于其非零行的个数
  4. 只要是秩相同的矩阵,都可经过初等变换变成彼此。
  5. 如何求秩?化成梯形阵即可。
  6. 矩 阵 A 与 B 等 价 ↔ r ( A ) = r ( B ) 矩阵A与B等价\leftrightarrow r(A)=r(B) ABr(A)=r(B)
  7. 满秩矩阵的定义:满秩矩阵的行列式不等于零(非奇异矩阵)。

初等矩阵

  1. 初等矩阵的定义:对单位阵经过一次初等变换得到的矩阵叫做初等矩阵。
  2. 初等矩阵的性质:初等矩阵的转置仍为同类型的初等矩阵
  3. 初等矩阵与初等变换的关系:行变换相当于左乘初等矩阵;列变换相当于右乘初等矩阵
  4. 满秩的不同说法:A与同阶单位阵等价;A非奇异;A可分为初等矩阵的乘积 A = P 1 P 2 P 3 . . . P m A=P_1P_2P_3...P_m A=P1P2P3...Pm
  5. 若P、Q为满秩矩阵,则有
    r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) r(A)=r(PA)=r(AQ)=r(PAQ) r(A)=r(PA)=r(AQ)=r(PAQ)
    满秩矩阵可以看成是初等矩阵的乘积,可以看成是多次初等变换

逆矩阵

  1. 逆矩阵可以间接实现矩阵的除法
  2. 定义:若AB=BA=E,则称B为A的逆矩阵,记做 A − 1 A^{-1} A1
  3. 逆矩阵是唯一的,也就是说只要找出 A B = E AB=E AB=E,则 B B B就是A的逆矩阵
  4. 什么时候A才有逆矩阵?A的行列式不等于零
    A − 1 = A ∗ ∣ A ∣ A^{-1}=\frac{A^*}{\left|A\right|} A1=AA
    这个公式说明了逆矩阵的存在条件以及逆矩阵与伴随矩阵的关系,但是并不用来求 A − 1 A^{-1} A1

逆矩阵的性质

  1. 逆矩阵的行列式的值是 1 ∣ A ∣ \frac{1}{\left|A\right|} A1
  2. ( A − 1 ) T = ( A T ) − 1 (A^{-1})^T=(A^T)^{-1} (A1)T=(AT)1
  3. ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
  4. ( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac{1}{k}A^{-1} (kA)1=k1A1
  5. 如何求逆矩阵?初等变换法;定义法(找出 A B = E AB=E AB=E
  6. 对于证明题形如 X − 1 = Y X^{-1}=Y X1=Y解法非常固定,只要证明 X Y = E XY=E XY=E即可

分块矩阵

  1. 分块矩阵的作用在于简便运算(其中的运算包括乘法、逆、转置等等)
  2. 定义:以字块为元素形成的矩阵为分块矩阵
  3. 转置运算:大块小块一起转
  4. 准对角阵(加减、数乘、乘法、逆、转置、行列式…一大堆非常好的性质):
    在这里插入图片描述
    在这里插入图片描述
  5. 分块上三角阵(逆矩阵、行列式非常好算):
    在这里插入图片描述
  6. 分块斜对角阵(逆矩阵非常好算):
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值