线性代数 --- 矩阵求逆的4种方法

线性代数 --- 矩阵求逆的4种方法

写在最前面:

        在大多数情况下,我们学习线性代数的目的是求解线性方程组Ax=b,而我在跟很多同事聊天的过程中发现,他们对于解方程的第一反应大都是求逆。实际上,求解线性方程组的方法有很多,包括求逆,假设矩阵A可逆,则有:

Ax=b\Rightarrow A^{-1}Ax= A^{-1}b\Rightarrow Ix= A^{-1}b\Rightarrow x= A^{-1}b

        在这些众多的方法中,我个人认为LU分解应该成为最先被采纳的方案,而非求逆,因为求逆会引入较大的精度误差。LU分解的整个计算流程大致

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值