n的阶乘在m进制下结尾0的个数

推导

首先举几个例子:

  • 8 8 8在二进制下可以表示为 1 × 2 3 1×2^3 1×23

  • 400 400 400在十进制下可以表示为 4 × 1 0 2 4×10^2 4×102

  • 12 12 12 6 6 6进制下表示为 2 × 6 1 2×6^1 2×61

因此不难发现如果要求一个数 n n n m m m下结尾 0 0 0的个数,实际上就是求出满足 n = t ∗ m k n = t*m^k n=tmk最大的 k k k

但是如果是 n n n的阶乘呢?需要对 n ! n! n!质因数分解吗?先看下面⬇️

n!的所有质因数

阶乘数很大,显然没有办法求出阶乘然后质因数分解。考虑 n ! n! n!的所有质因数都不会超过 n n n,显然可用的质因数就是 n n n以内的所有因数。考虑如何求出 n ! n! n!所有的质因数的个数。先分析一个简单的问题,求出 n n n以内质数 p p p的倍数的个数,即 ⌊ n p ⌋ \lfloor \frac{n}{p} \rfloor pn,但是 n n n的阶乘是前 n n n个数相乘,而且对于某个质数,我们只知道它的倍数是没有用的,需要知道每个数上该质数的幂次是多少。而 n n n以内 p p p的倍数设分解为 p k ∗ q p^k*q pkq,显然 k = 1 , 2 , 3 , . . . k=1,2,3,... k=1,2,3,...。那么 ⌊ n p ⌋ \lfloor \frac{n}{p} \rfloor pn求出的只是 k = 1 k=1 k=1的数的个数,还有 k = 2 , 3 , . . . k=2,3,... k=2,3,... p p p的倍数,这时我们如果再将上述结果除以 p p p,即 ⌊ ⌊ n p ⌋ p ⌋ \lfloor \frac{\lfloor \frac{n}{p} \rfloor}{p} \rfloor ppn,也相当于是 ⌊ n p 2 ⌋ \lfloor \frac{n}{p^2} \rfloor p2n,这求出的是 k = 2 k=2 k=2时的倍数个数,以此类推。将所有结果相加,得到的恰好是 n ! n! n!中质数 p p p的个数。

例:求在 8 ! 8! 8! 2 2 2的个数:

  • 首先我们先计算出 2 2 2的倍数的个数: 8 / 2 = 4 8/2=4 8/2=4

  • 其次我们计算出 4 4 4的倍数的个数: 8 / 4 = 2 8/4=2 8/4=2(上面一个式子求出了第一层,现在求第二层)

  • 最后我们解出 8 8 8的倍数的个数: 8 / 8 = 1 8/8=1 8/8=1

4 + 2 + 1 = 7 4+2+1=7 4+2+1=7,一共 7 7 7 2 2 2出现了

即: c n t ( x ) = [ n / ( x 1 ) ] + [ n / ( x 2 ) ] + [ n / ( x 3 ) ] + . . . ( 直 到 x 的 次 方 大 于 n ) cnt(x)=[n/(x^1)]+[n/(x^2)]+[n/(x^3)]+...(直到x的次方大于n) cnt(x)=[n/(x1)]+[n/(x2)]+[n/(x3)]+...(xn)

typedef long long ll
ll cal(int n, int x) {
    if(n==0 || n==1) return 0;
    ll ans = 0;
    while(n) {
        ans += n / x;
        n /= x;
    }
    return ans;
}
总结

因为任何一个数都可以分解为若干质因数的乘积,再从质因数分解的角度考虑,在保证有解的情况下可以按以下方式推导:

n ! = t ∗ m k = t ∗ ( p 1 q 1 , p 1 q 2 , . . . , , p n q n ) k n!=t*m^k=t*(p_1^{q_1},p_1^{q_2},...,,p_n^{q_n})^k n!=tmk=t(p1q1,p1q2,...,,pnqn)k,可以求出 n ! n! n! p 1 , p 2 , . . . , p n p_1,p_2,...,p_n p1,p2,...,pn的出现次数,假设分别为 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn,那么有 x 1 = k 1 q 1 , x 2 = k 2 q 2 , . . . , x n = k n q n x_1=k_1q_1,x_2=k_2q_2,...,x_n=k_nq_n x1=k1q1x2=k2q2...xn=knqn。显然最终的答案 k = m i n { k 1 , k 2 , . . . , k n } k = min\{ k_1,k_2,...,k_n \} k=min{k1,k2,...,kn}

简单模板

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1e4 + 10;
int prime[maxn];     //存所有质数
int a[maxn], b[maxn];  //a存所求数的所有质因子,b存每个质因子的个数
bool isprime[maxn];
int num, cnt;  //num是maxn范围内素数个数

void init() {
    memset(isprime, true, sizeof(isprime));
    for(int i = 2; i <= maxn; i++) {
        if(isprime[i]) {
            prime[num++] = i;
            for(int j = i * i; j <= maxn; j += i)
                isprime[j] = false;
        }
    }
}

void decom(int n) {
    cnt = 0;       //cnt是所有质因数的种数
    memset(b, 0, sizeof b);
    for(int i = 0; i < num; i++) {
        if(prime[i] > n) break;
        int d = n;
        while(d % prime[i] == 0) {
            a[cnt] = prime[i];
            b[cnt]++;
            d /= prime[i];
        }
        if(d < n) cnt++;
    }
}

ll cal(ll n, ll x) {
    if(n == 0 || n == 1) return 0;
    ll ans = 0;
    while(n) {
        ans += n / x;
        n /= x;
    }
    return ans;
}

ll solve(ll n, int m) {
    decom(m);
    ll ans = INF;
    for (int i = 0; i < cnt; i++) {
        ll t = cal(n, a[i]);
        ans = min(ans, t / b[i]);
    }
    return ans;
}

int main(){
    ll n;
    int m;
    cin >> n >> m;
    init();
    cout << solve(n, m) << endl;
    return 0;
}
  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值