行列式的重要性质
-
行列式和它的转置行列式值相等,即:
∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∣ a 11 a 21 . . . a n 1 a 12 a 22 . . . a n 2 . . . . . . . . . . . . a 1 n a 2 n . . . a n n ∣ \left|\begin{array}{ccc} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ . & . & ... & . \\ . & . & ... & . \\ a_{n1} & a_{n2} & ... & a_{nn} \end{array} \right| = \left|\begin{array}{ccc} a_{11} & a_{21} & ... & a_{n1} \\ a_{12} & a_{22} & ... & a_{n2} \\ . & . & ... & . \\ . & . & ... & . \\ a_{1n} & a_{2n} & ... & a_{nn} \end{array} \right| a11a21..an1a12a22..an2...............a1na2n..ann = a11a12..a1na21a22..a2n...............an1an2..ann
-
互换行列式的任意两行(两列),行列式的值将改变正负号:
∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = − ∣ a 21 a 22 . . . a 2 n a 11 a 12 . . . a 1 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \left|\begin{array}{ccc} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ . & . & ... & . \\ . & . & ... & . \\ a_{n1} & a_{n2} & ... & a_{nn} \end{array} \right| = -\left|\begin{array}{ccc} a_{21} & a_{22} & ... & a_{2n} \\ a_{11} & a_{12} & ... & a_{1n} \\ . & . & ... & . \\ . & . & ... & . \\ a_{n1} & a_{n2} & ... & a_{nn} \end{array} \right| a11a21..an1a12a22..an2...............a1na2n..ann =− a21a11..an1a22a12..an2...............a2na1n..ann
-
行列式某行或者某列的公因子可以提到行列式记号外面:
∣ b 1 a 11 b 1 a 12 . . . b 1 a 1 n b 2 a 21 b 2 a 22 . . . b 2 a 2 n . . . . . . . . . . . . b n a n 1 b n a n 2 . . . b n a n n ∣ = ∏ i = 1 n b i ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \left|\begin{array}{ccc} b_1a_{11} & b_1a_{12} & ... & b_1a_{1n} \\ b_2a_{21} & b_2a_{22} & ... & b_2a_{2n} \\ . & . & ... & . \\ . & . & ... & . \\ b_na_{n1} & b_na_{n2} & ... & b_na_{nn} \end{array} \right| = \prod_{i=1}^n b_i\left|\begin{array}{ccc} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ . & . & ... & . \\ . & . & ... & . \\ a_{n1} & a_{n2} & ... & a_{nn} \end{array} \right| b1a11b2a21..bnan1b1a12b2a22..bnan2...............b1a1nb2a2n..bnann =∏i=1nbi a11a21..an1a12a22..an2...............a1na2n..ann
-
行列式具有分行(列)相加性:
∣ b 1 + c 1 b 2 + c 2 . . . b n + c n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∣ b 1 b 2 . . . b n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ + ∣ c 1 c 2 . . . c n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \left|\begin{array}{ccc} b_1+c_1 & b_2+c_2 & ... & b_n+c_n \\ a_{21} & a_{22} & ... & a_{2n} \\ . & . & ... & . \\ . & . & ... & . \\ a_{n1} & a_{n2} & ... & a_{nn} \end{array} \right| = \left|\begin{array}{ccc} b_1 & b_2 & ... & b_n \\ a_{21} & a_{22} & ... & a_{2n} \\ . & . & ... & . \\ . & . & ... & . \\ a_{n1} & a_{n2} & ... & a_{nn} \end{array} \right| + \left|\begin{array}{ccc} c_1 & c_2 & ... & c_n \\ a_{21} & a_{22} & ... & a_{2n} \\ . & . & ... & . \\ . & . & ... & . \\ a_{n1} & a_{n2} & ... & a_{nn} \end{array} \right| b1+c1a21..an1b2+c2a22..an2...............bn+cna2n..ann = b1a21..an1b2a22..an2...............bna2n..ann + c1a21..an1c2a22..an2...............cna2n..ann
-
将行列式某一行(列)的各元素同乘以一个数 k k k后加到另外一行(列)其值不变。这一点同矩阵初等变换
∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∣ a 11 a 12 . . . a 1 n a 21 + k a 11 a 22 + k a 12 . . . a 2 n + k a 1 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \left|\begin{array}{ccc} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ . & . & ... & . \\ . & . & ... & . \\ a_{n1} & a_{n2} & ... & a_{nn} \end{array} \right| = \left|\begin{array}{ccc} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} + ka_{11} & a_{22}+ka_{12} & ... & a_{2n}+ka_{1n} \\ . & . & ... & . \\ . & . & ... & . \\ a_{n1} & a_{n2} & ... & a_{nn} \end{array} \right| a11a21..an1a12a22..an2...............a1na2n..ann = a11a21+ka11..an1a12a22+ka12..an2...............a1na2n+ka1n..ann
-
拉普拉斯定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和:
∣ A ∣ = ∑ i = 1 n ( − 1 ) 1 + i a 1 i C 1 i |A| = \sum_{i=1}^n(-1)^{1+i}a_{1i}C_{1i} ∣A∣=∑i=1n(−1)1+ia1iC1i
-
分块行列式的值等于其主对角线上两个子块行列式的值的乘积(右上角的块必须为全零):
∣ a 11 a 12 0 0 a 21 a 22 0 0 b 11 b 12 c 11 c 12 b 21 b 22 c 21 c 22 ∣ = ∣ a 11 a 12 a 21 a 22 ∣ ∣ c 11 c 12 c 21 c 22 ∣ \left|\begin{array}{ccc} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ b_{11} & b_{12} & c_{11} & c_{12} \\ b_{21} & b_{22} & c_{21} & c_{22} \end{array} \right| = \left|\begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| \left|\begin{array}{ccc} c_{11} & c_{12} \\ c_{21} & c_{22} \end{array} \right| a11a21b11b21a12a22b12b2200c11c2100c12c22 = a11a21a12a22 c11c21c12c22
行列式化简常用技巧
-
上三角行列式、下三角行列式以及主对角线行列式的值都是主对角线上元素乘积。
∣ a 11 0 . . . 0 a 21 a 22 . . . 0 . . . . . 0 . . . . . 0 a n 1 a n 2 . . . a n n ∣ = ∏ i = 1 n a i i \left|\begin{array}{ccc} a_{11} & 0 & ... & 0 \\ a_{21} & a_{22} & ... & 0 \\ . & . & ... & 0 \\ . & . & ... & 0 \\ a_{n1} & a_{n2} & ... & a_{nn} \end{array} \right| = \prod_{i=1}^na_{ii} a11a21..an10a22..an2...............0000ann =∏i=1naii
∣ a 11 a 12 . . . a 1 n 0 a 22 . . . a 2 n . . . . . a 3 n . . . . . . 0 0 . . . a n n ∣ = ∏ i = 1 n a i i \left|\begin{array}{ccc} a_{11} & a_{12} & ... & a_{1n} \\ 0 & a_{22} & ... & a_{2n} \\ . & . & ... & a_{3n} \\ . & . & ... & . \\ 0 & 0 & ... & a_{nn} \end{array} \right|= \prod_{i=1}^na_{ii} a110..0a12a22..0...............a1na2na3n.ann =∏i=1naii
∣ a 11 0 . . . 0 0 a 22 . . . 0 . . . . . 0 . . . . . . 0 0 . . . a n n ∣ = ∏ i = 1 n a i i \left|\begin{array}{ccc} a_{11} & 0 & ... & 0 \\ 0 & a_{22} & ... & 0 \\ . & . & ... & 0 \\ . & . & ... & . \\ 0 & 0 & ... & a_{nn} \end{array} \right| = \prod_{i=1}^na_{ii} a110..00a22..0...............000.ann =∏i=1naii
-
副对角线行列式的值:
∣ 0 0 . . . a 11 0 0 . . . 0 . . . . . . 0 a n − 1 , n − 1 . . . . a n n 0 . . . 0 ∣ = ( − 1 ) n ( n − 1 ) 2 ∗ ∏ i = 1 n a i i \left|\begin{array}{ccc} 0 & 0 & ... & a_{11} \\ 0 & 0 & ... & 0 \\ . & . & ... & . \\ 0 & a_{n-1,n-1} & ... & . \\ a_{nn} & 0 & ... & 0 \end{array} \right| = (-1)^{\frac{n(n-1)}{2}} *\prod_{i=1}^na_{ii} 00.0ann00.an−1,n−10...............a110..0 =(−1)2n(n−1)∗∏i=1naii
-
若行列式有两行(列)元素对应相等,那么此行列式的值为零;若行列式有一行(列)元素全为零,那么此行列式的值为零若行列式有两行(列)元素成比例,那么此行列式的值为零。
行列式的多种计算方法
定义法
计算较为复杂一般只用于低阶行列式。
三角化法
将行列式化为上三角(下三角)行列式。
箭形行列式
形如 ∣ a a . . . a a b . . . 0 . . . . . . a 0 . . . 0 a 0 . . . x ∣ \left|\begin{array}{ccc} a & a & ... & a \\ a & b & ... & 0 \\ . & . & ... & . \\ a & 0 & ... & 0 \\ a & 0 & ... & x \end{array} \right| aa.aaab.00...............a0.0x 的行列式,只需按主对角线上的值 t t t使得第一列减去后面每列的 1 t \frac{1}{t} t1。
降阶法
根据拉普拉斯展开定理,对行列式进行适当的展开。
升阶法
将原行列式增加一行一列,而保持原行列式的值不变或与原行列式有某种巧妙的关系。
例:
∣ x a . . . a a x . . . a . . . . . . a a . . . a a a . . . x ∣ = ∣ 1 a a . . . a 0 x a . . . a 0 a x . . . a 0 . . . . . . 0 a a . . . a 0 a a . . . x ∣ = ∣ 1 a a . . . a − 1 x − a 0 . . . 0 − 1 0 x − a . . . 0 − 1 . . . . . . − 1 0 0 . . . 0 − 1 0 0 . . . x − a ∣ \left|\begin{array}{ccc} x & a & ... & a \\ a & x & ... & a \\ . & . & ... & . \\ a & a & ... & a \\ a & a & ... & x \end{array} \right| = \left|\begin{array}{ccc} 1 & a& a &...& a\\ 0 & x & a & ... & a \\ 0 & a & x & ... & a \\ 0 & . & . & ... & . \\ 0 & a & a & ... & a \\0 & a & a & ... & x \end{array} \right| = \left|\begin{array}{ccc} 1 & a& a &...& a\\ -1 & x-a & 0 & ... & 0 \\ -1 & 0 & x-a & ... & 0 \\ -1 & . & . & ... & . \\ -1 & 0 & 0 & ... & 0 \\-1 & 0 & 0 & ... & x-a \end{array} \right| xa.aaax.aa...............aa.ax = 100000axa.aaaax.aa..................aaa.ax = 1−1−1−1−1−1ax−a0.00a0x−a.00..................a00.0x−a
然后 C 1 + 1 x − a C 2 , . . . c 1 + 1 x − a C n C_1+\frac{1}{x-a}C_2,...c_1+\frac{1}{x-a}C_n C1+x−a1C2,...c1+x−a1Cn,最后化简为: ∣ 1 + n a x − a a a . . . a 0 x − a 0 . . . 0 0 0 x − a . . . 0 0 . . . . . . 0 0 0 . . . 0 0 0 0 . . . x − a ∣ \left|\begin{array}{ccc} 1+\frac{na}{x-a} & a& a &...& a\\ 0 & x-a & 0 & ... & 0 \\ 0 & 0 & x-a & ... & 0 \\ 0 & . & . & ... & . \\ 0 & 0 & 0 & ... & 0 \\0 & 0 & 0 & ... & x-a \end{array} \right| 1+x−ana00000ax−a0.00a0x−a.00..................a00.0x−a
递推法
找出行列式和其相应的 n − 1 , n − 2 , . . . n-1,n-2,... n−1,n−2,...阶行列式之间的递推关系。
数学归纳法
由行列式的特殊形式,计算低阶行列式的公式猜想推广到高阶行列式。
拆分法
根据行列式的某些位置由若干数相加,那么根据行列式的分行(列)相加性拆分成多个行列式求解。
分解乘积法
根据行列式的特点利用行列式的乘法公式把所给行列式分解成两个易求解的行列式之积,通过对这两个行列式的计算从而得到其值。
∣ a 1 + b 1 a 1 + b 2 . . . a 1 + b n a 2 + b 1 a 2 + b 2 . . . a 2 + b n . . . . . . . . . . . . a n + b 1 a n + b 2 . . . a n + b n ∣ = ∣ a 1 1 0 . . . 0 a 2 1 0 . . . 0 . . . . . . . . . . . . . . a n 1 0 . . . 0 ∣ ∗ ∣ b 1 b 2 b 3 . . . b n 1 1 1 . . . 1 0 0 0 . . . 0 . . . . . . . 0 0 0 . . . 0 ∣ = { a 1 + b 1 n = 1 ( a 1 − a 2 ) ( b 2 − b 1 ) n = 2 0 n ≥ 3 \left|\begin{array}{ccc} a_1+b_1 & a_1+b_2 & ... & a_1+b_n \\ a_2+b_1 & a_2+b_2 & ... & a_2+b_n \\ . & . & ... & . \\ . & . & ... & . \\ a_n+b_1 & a_n+b_2 & ... & a_n+b_n \end{array} \right| = \left|\begin{array}{ccc} a_1 & 1 & 0 &... & 0 \\ a_2 & 1 & 0 & ... & 0 \\ . & . & . & ... & . \\ . & . & . & ... & . \\ a_n & 1 & 0 & ... & 0 \end{array} \right| * \left|\begin{array}{ccc} b_1 & b_2 & b_3 &... & b_n \\ 1 & 1 & 1 & ... & 1 \\ 0 & 0 & 0 & ... & 0 \\ . & . & . & ... & . \\ 0 & 0 & 0 & ... & 0 \end{array} \right|= \left\{\begin{array}{rcl} a_1+b_1 & n =1\\ (a_1-a_2)(b_2-b_1) & n=2\\ 0 & n\geq3 \end{array}\right. a1+b1a2+b1..an+b1a1+b2a2+b2..an+b2...............a1+bna2+bn..an+bn = a1a2..an11..100..0...............00..0 ∗ b110.0b210.0b310.0...............bn10.0 =⎩ ⎨ ⎧a1+b1(a1−a2)(b2−b1)0n=1n=2n≥3