背包九讲(2)——完全背包

问题引入

n n n种物品每种无限个,第 i i i个物品的体积为 v i v_i vi,价值为 w i w_i wi,选一些物品装入到容量为 C C C的背包中,使得背包内物品在不超过容量 C C C的情况下价值和尽量大

从DAG模型到完全背包

DAG模型,紫书有介绍,我从紫书开始学的动态规划

硬币问题

问题描述:有 n n n种硬币,面值分别为 V 1 V_1 V1, V 2 V_2 V2,…, V n V_n Vn,每种无限多。给定一非负整数 S S S,可以选用多少个硬币使得面值之和恰好为 S S S?输出硬币数目的最大值( 1 < = n < = 100 , 0 < = S < = 1000 , 1 < = V i < = S 1<=n<=100,0<=S<=1000,1<=V_i<=S 1<=n<=100,0<=S<=1000,1<=Vi<=S)

本题本质上也是DAG上的路径问题,将每种面值看做一个点,表示还需凑足的面值,则考虑逆推,初始状态为 S S S,目标状态为 0 0 0。若存在状态 i i i,每使用一个硬币 j j j,状态便转移到 i − V j i-V_j iVj

01 01 01背包的二维版本类似,本题也有两种枚举方法:

顺序枚举

常写此种方法

很明显此问题的面值和是影响决策的主要因素,因此设 f [ i ] f[i] f[i]为从 1 → i 1 \rightarrow i 1i考虑每种面值和,当前面值和为 i i i时最大的硬币数量,考虑动态规划子问题的最优性,显然f[i]的状态是可以由 f [ i − v [ j ] ] f[i-v[j]] f[iv[j]]转移而来

int f[maxn],v[maxn];

memset(f,0x8f,sizeof f);  //前面01背包提到了,这里是终点确定的DAG(背包)
f[0]=0;
for(int i=1;i<=S;i++)
	for(int j=1;j<=n;j++)
		if(i>=v[j]) f[i]=max(f[i]+f[i-v[j]]+1);
cout<<f[S]<<endl;

逆序递推

f [ i ] f[i] f[i]为从 n → i n \rightarrow i ni考虑每种面值和,当前面值和为 i i i时最大的硬币数量, f [ i ] f[i] f[i]的状态是可以由 f [ i + v [ j ] ] f[i+v[j]] f[i+v[j]]转移而来

int f[maxn],v[maxn];

memset(f,0x8f,sizeof f);
f[S]=0;
for(int i=S-1;i>=0;i--)
	for(int j=1;j<=n;j++)
		if(i+v[j]<=S) f[i]=max(f[i]+f[i+v[j]]+1);
cout<<f[0]<<endl;
完全背包

不难发现硬币问题实际上就是将DAG模型从无权变成了带权,问题变成了求以 C C C为起点,终点任意边权之和最大的路径,相较于硬币问题,唯一的变动只是将 + 1 +1 +1改为 + w [ j ] +w[j] +w[j]

代码以上述的顺序枚举为例:

int v[1005],w[1005],f[1005];

cin>>n>>C;
for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
for(int i=1;i<=C;i++)
    for(int j=1;j<=n;j++){
        if(i>=v[j]) f[i]=max(f[i],f[i-v[j]]+w[j]);
    }
cout<<f[C]<<endl;

实际上上面两个循环的次序是可以交换的:

  • 如果背包容量是第一个循环,那么含义是:枚举每个较小的容量 i i i,将 n n n个背包的状态转移之后,后面较大的容量 k k k状态转移时依赖于 f [ k − v [ j ] ] f[k-v[j]] f[kv[j]],而较小容量的状态已经对应在背包无限的情况下的最优方案, f [ V ] f[V] f[V]即为最终答案

  • 如果背包容量是第二个循环,那么含义是:枚举每种物品,查看在容量 1 → V 1 \rightarrow V 1V下每个状态下可以装的最优方案,其中 f [ j − v [ i ] ] f[j-v[i]] f[jv[i]]既可以是当前种类下拿多个转移而来,也可以是之前若干种物品每种拿若干个(可以为 0 0 0)转移而来,因此对应了所有方案的最优解, f [ V ] f[V] f[V]即为最终答案

此处还优化了输入,边输入边计算

int f[1005];

cin>>n>>C;
for(int i=1,v,w;i<=n;i++){
	cin>>v>>w;
    for(int j=v;j<=C;j++)
        f[j]=max(f[j],f[j-v]+w);
}
cout<<f[C]<<endl;

从01背包到完全背包


在网上看博客和视频,发现 01 01 01背包和完全背包存在的千丝万缕的联系

首先如果我们考虑由 01 01 01背包直接转化为完全背包,可以考虑增加一个循环,枚举到每个物品选择不超过当前容量的最大数量,熟悉了 01 01 01背包后不难发现这样是正确的:

for(int i=1,v,w;i<=n;i++){
	cin>>v>>w;
	for(int j=m;j>=v;j--)
		for(int k=0;k*v<=j;k++)
			f[j]=max(f[j],f[j-k*v]+k*w);

}

对于每个较小的 f [ j − k ∗ v ] f[j-k*v] f[jkv],我们所用到的都只是上一个状态 f ( i − 1 , j − k ∗ v ) f(i-1,j-k*v) f(i1,jkv)而不包括当前的第 i i i个物品,那么如果优化的话,显然是让 f ( i , j − k ∗ v ) f(i,j-k*v) f(i,jkv)这个状态先更新包括第i个物品的状态就行了

我们看 01 01 01背包最后的滚动数组代码:

int f[1005];

for(int i=1,v,w;i<=n;i++){
	cin>>v>>w;
	for(int j=C;j>=v;j--){  	//这里必须逆序
		f[j]=max(f[j],f[j-v]+w);
	}
}

再看上面最后推导的完全背包代码:

int f[1005];

for(int i=1,v,w;i<=n;i++){
	cin>>v>>w;
    for(int j=v;j<=C;j++)
        f[j]=max(f[j],f[j-v]+w);
}

已经很明显了,唯一的差别是对于容量 j j j的枚举, 01 01 01背包必须是逆序,相反完全背包必须是顺序

01 01 01背包那里有句很重要的话:后面列的更新依赖于前面的列却不影响前面的列。拿上面说的这句话: f [ j − v [ i ] ] f[j-v[i]] f[jv[i]]既可以是当前种类下拿多个转移而来,也可以是之前若干种物品每种拿若干个(可以为 0 0 0)转移而来,因此对应了所有方案的最优解, f [ V ] f[V] f[V]即为最终答案

这里讲的有点绕,确实比较难懂。笔者也是蒟蒻,因此如果想知道规范的证明,参考下面的数学归纳法证明(参考了B站评论)

  1. 假设在前 i − 1 i-1 i1个物品中, f [ j ] f[j] f[j]都是正确的

  2. 在前 i i i个物品中,对于某个 j j j而言,如果最优解包含 k k k v [ i ] v[i] v[i],则一定会枚举到 f [ j − k ∗ v [ i ] ] f[ j-k*v[i] ] f[jkv[i]] f [ j − k ∗ v [ i ] ] f[ j-k*v[i] ] f[jkv[i]]是如何得到的呢? f [ j − k ∗ v [ i ] ] = m a x { f [ j − k ∗ v [ i ] ] , f [ j − k ∗ v [ i ] − v [ i ] ] + w [ i ] } f[ j-k*v[i] ]=max\{ f[ j-k*v[i] ],f[ j-k*v[i]-v[i] ] + w[i] \} f[jkv[i]]=max{f[jkv[i]],f[jkv[i]v[i]]+w[i]} ,(由于 j j j正序, f [ j − k ∗ v [ i ] ] f[ j-k*v[i] ] f[jkv[i]]为前 i − 1 i-1 i1个物品的值, f [ j − k ∗ v [ i ] − v [ i ] ] f[ j-k*v[i]-v[i] ] f[jkv[i]v[i]]为前 i i i个物品的值),最后会传递到 m a x { f [ v [ i ] ] , f [ 0 ] + w [ i ] } max\{ f[ v[i] ],f[ 0 ] + w[i] \} max{f[v[i]],f[0]+w[i]}处。因为 f [ v [ i ] ] f[ v[i] ] f[v[i]]一定正确(①中已假设前 i − 1 i-1 i1个物品中的 f [ j ] f[j] f[j]全都正确), f [ 0 ] f[0] f[0]一定正确( f [ 0 ] = 0 f[0]=0 f[0]=0), w [ i ] w[i] w[i]一定正确,所以:

    m a x { f [ v [ i ] ] , f [ 0 ] + w [ i ] } max\{ f[ v[i] ] , f[0] + w[i] \} max{f[v[i]],f[0]+w[i]}一定正确 ⟹ \Longrightarrow f [ j − k ∗ v [ i ] ] f[j-k*v[i]] f[jkv[i]]一定正确 ⟹ \Longrightarrow f [ j ] f[j] f[j]一定正确

  3. 综上,证明成立。

模板题

ACwing完全背包

#include <bits/stdc++.h>
#include <unordered_map>
#include <unordered_set>

using namespace std;
#define fi first
#define se second
#define pb push_back
#define ins insert
#define Vector Point
#define ENDL "\n"
#define lowbit(x) (x&(-x))
#define mkp(x, y) make_pair(x,y)
#define mem(a, x) memset(a,x,sizeof a);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double dinf = 1e300;
const ll INF = 1e18;
const int Mod = 1e9 + 7;
const int maxn = 2e7 + 10;

int d[1005][1005], f[1005];

int main() {
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n, C;
    cin >> n >> C;

    for (int i = 1, v, w; i <= n; i++) {
        cin >> v >> w;
        for (int j = v; j <= C; j++) {
            f[j] = max(f[j], f[j - v] + w);
        }
    }
    cout << f[C] << endl;
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值