洛谷 P3327 [SDOI2015]约数个数和(莫比乌斯反演)

传送门


题目大意

∑ i = 1 n ∑ j = 1 m d ( i j ) \sum_{i=1}^n\sum_{j=1}^md(ij) i=1nj=1md(ij),其中 d ( i j ) d(ij) d(ij)代表 i j ij ij的约数个数

解题思路

一个重要的公式: d ( i j ) = ∑ x ∣ i ∑ y ∣ j [ ( x , y ) = 1 ] d(ij)=\sum_{x|i}\sum_{y|j}[(x,y)=1] d(ij)=xiyj[(x,y)=1],原式变为: f ( n , m ) = ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ ( x , y ) = 1 ] f(n,m)=\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[(x,y)=1] f(n,m)=i=1nj=1mxiyj[(x,y)=1]

证明:考虑一个质数 p p p,在 a a a中为 p α p^{\alpha} pα,在 b b b中为 p β p^{\beta} pβ,在 i j ij ij中对因数个数的贡献为 α + β + 1 \alpha+\beta+1 α+β+1。在等式的右边要满足 g c d ( x , y ) = 1 gcd(x,y)=1 gcd(x,y)=1,就有 g c d ( p α x , p β y ) = 1 gcd(p^{\alpha_x},p^{\beta_y})=1 gcd(pαx,pβy)=1,要么 α x = 0 , β y ∈ [ 0 , β ] \alpha_x=0,\beta_y\in[0,\beta] αx=0,βy[0,β],有 β + 1 \beta+1 β+1种;要么 β y = 0 , α x ∈ [ 0 , α ] \beta_y=0,\alpha_x\in[0,\alpha] βy=0,αx[0,α],有 α + 1 \alpha+1 α+1种。最后减去二者同为零的情况,即 α + β + 1 \alpha+\beta+1 α+β+1,等于左式,得证。

根据 ∑ d ∣ n μ ( d ) = [ 1 n ] ⇔ [ g c d ( x , y ) = 1 ] \sum_{d|n}\mu(d) = [\frac{1}{n}] \Leftrightarrow [gcd(x,y)=1] dnμ(d)=[n1][gcd(x,y)=1],得: f ( n , m ) = ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j ∑ d ∣ ( x , y ) μ ( d ) f(n,m)=\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}\sum_{d|(x,y)}\mu(d) f(n,m)=i=1nj=1mxiyjd(x,y)μ(d)

因为 i , j i,j i,j会取遍 [ 1 , n ] , [ 1 , m ] [1,n],[1,m] [1,n],[1,m],而 x , y x,y x,y分别取遍其所有的因子时就可以取遍 [ 1 , n ] , [ 1 , m ] [1,n],[1,m] [1,n],[1,m]的所有数,联系到整除分块不难得知 [ 1 , n ] , [ 1 , m ] [1,n],[1,m] [1,n],[1,m]的某个因子 x , y x,y x,y分别有 ⌊ n x ⌋ , ⌊ m y ⌋ \lfloor \frac{n}{x} \rfloor,\lfloor \frac{m}{y} \rfloor xn,ym个。那么可以简化为 f ( n , m ) = ∑ x = 1 n ∑ y = 1 m ⌊ n x ⌋ ⌊ m y ⌋ ∑ d ∣ ( x , y ) μ ( d ) f(n,m)=\sum_{x=1}^n\sum_{y=1}^m\lfloor \frac{n}{x} \rfloor\lfloor \frac{m}{y} \rfloor\sum_{d|(x,y)}\mu(d) f(n,m)=x=1ny=1mxnymd(x,y)μ(d)

x = x ′ ∗ d , y = y ′ ∗ d x=x'*d,y=y'*d x=xd,y=yd,然后再次令新的 x = x ′ , y = y ′ x=x',y=y' x=x,y=y,最后得到:

f ( n , m ) = ∑ d = 1 n μ ( d ) ∑ x = 1 ⌊ n d ⌋ ⌊ n d x ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ m d y ⌋ f(n,m)=\sum_{d=1}^n\mu(d)\sum_{x=1}^{\lfloor \frac{n}{d} \rfloor}\lfloor \frac{n}{dx} \rfloor\sum_{y=1}^{\lfloor \frac{m}{d} \rfloor}\lfloor \frac{m}{dy} \rfloor f(n,m)=d=1nμ(d)x=1dndxny=1dmdym

g ( n ) = ∑ i = 1 n ⌊ n i ⌋ = ∑ i = 1 n d ( i ) g(n)=\sum_{i=1}^n\lfloor \frac{n}{i} \rfloor=\sum_{i=1}^nd(i) g(n)=i=1nin=i=1nd(i),右式是可以线性筛预处理的,而 ∑ d = 1 n μ ( d ) \sum_{d=1}^n\mu(d) d=1nμ(d)可以求前缀和。那么最终的式子为 ∑ d = 1 n μ ( d ) g ( ⌊ n d ⌋ ) g ( ⌊ m d ⌋ ) \sum_{d=1}^n\mu(d)g(\lfloor \frac{n}{d} \rfloor)g(\lfloor \frac{m}{d} \rfloor) d=1nμ(d)g(dn)g(dm)是可以整除分块来求的。

代码


//
// Created by Happig on 2020/9/23
//
#include <bits/stdc++.h>
#include <unordered_map>
#include <unordered_set>

using namespace std;
#define fi first
#define se second
#define pb push_back
#define ins insert
#define Vector Point
#define ENDL "\n"
#define lowbit(x) (x&(-x))
#define mkp(x, y) make_pair(x,y)
#define mem(a, x) memset(a,x,sizeof a);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double dinf = 1e300;
const ll INF = 1e18;
const int Mod = 1e9 + 7;
const int maxn = 5e4 + 10;

vector<int> prime;
bitset<maxn> vis;
int mu[maxn], premu[maxn], a[maxn];
ll d[maxn];

void init() {
    mu[1] = d[1] = 1;
    for (int i = 2; i < maxn; i++) {
        if (!vis[i]) {
            prime.push_back(i);
            mu[i] = -1, a[i] = 1, d[i] = 2;
        }
        for (int j = 0; j < prime.size() && i * prime[j] < maxn; j++) {
            vis[i * prime[j]] = 1;
            if (i % prime[j]) {
                mu[i * prime[j]] = -mu[i];
                d[i * prime[j]] = d[i] * 2, a[i * prime[j]] = 1;
            } else {
                mu[i * prime[j]] = 0;
                d[i * prime[j]] = d[i] / (a[i] + 1) * (a[i] + 2), a[i * prime[j]] = a[i] + 1;
                break;
            }
        }
    }
    for (int i = 1; i < maxn; i++) {
        premu[i] = premu[i - 1] + mu[i];
        d[i] += d[i - 1];
    }
}


int main() {
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t, n, m;
    cin >> t;
    init();
    while (t--) {
        cin >> n >> m;
        int up = min(n, m);
        ll ans = 0;
        for (int l = 1, r; l <= up; l = r + 1) {
            r = min(n / (n / l), m / (m / l));
            if (r > up) r = up;
            ans += (premu[r] - premu[l - 1]) * d[n / l] * d[m / l];
        }
        cout << ans << ENDL;
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值