线性代数之行列式的计算及其简化算法学习心得

本文介绍了线性代数中行列式的计算方法,包括按照定义展开、三角矩阵行列式计算及利用行变换简化计算。通过Laplace Expansion Theorem和高斯消元法,有效降低计算量,适用于处理大型矩阵。对于计算机处理行列式问题,高效的算法至关重要。
摘要由CSDN通过智能技术生成

第一次发文!

初入csdn,本人哈工大大一船舶与海洋工程专业,因为想学计算机相关专业再加上爹是搞开发的程序猿🐒,为大二辅修计算机做好准备,准备开始着手进行系统的计算机学习啦~


前言

最近在准备线性代数的期末考试,发现一个很有启发性的小问题和大家分享。


提示:以下是本篇文章正文内容,下面案例可供参考

一、计算矩阵——行列式

行列式的定义

行列式的定义在这里:

先来一个三阶行列式的定义。我们的教材是英文版哦~对我来讲,更有助于深入地理解概念以及本质。

可以看出行列式的定义比较简单(analogous to 2 by 2 matrix),对矩阵的第一行进行展开到2 * 2的矩阵,即可得到3 * 3矩阵的行列式。

对于一般的矩阵来说,定义如下:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值