Codeforces 1501 - C. Going Home(暴力+数学)

传送门


题目大意

给出一个序列 a a a,问能否找到四个不同的坐标 x , y , z , w x,y,z,w x,y,z,w使得满足 a x + a y = a z + a w a_x + a_y = a_z + a_w ax+ay=az+aw,若能随便输出一组合法解,否则输出 N O NO NO

解题思路

这题实际上考察我们对题目数据范围和时间复杂度计算的理解,首先要找到四个数,常规思路去做的话无论如何都要至少固定两个数,这样的复杂度至少是 n 2 n^2 n2,然后就出现了这题比赛时过的人很少的情况。

但是如果考虑暴力枚举每两对数的话最多会有 n 2 = 4 e 10 n^2 = 4e^{10} n2=4e10种答案,而两个数相加的最大值仅为 5 e 6 5e^6 5e6,这就表示如果暴力枚举的话一定能在比较短的时间内找到结果或者无解,个人感觉时间复杂度为 m i n { 5 e 6 , n 2 } min\{5e^6,n^2\} min{5e6,n2}

//
// Created by Happig on 2021/3/16.
//
#include <bits/stdc++.h>
#include <unordered_map>

using namespace std;
#define ENDL "\n"
#define lowbit(x) (x & (-x))
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double dinf = 1e300;
const ll INF = 1e18;
const int Mod = 1e9 + 7;
const int maxn = 2e5 + 10;
const int maxm = 5e6 + 10;

int a[maxn];
pii ans[maxm];
bitset<maxm> vis;

int main() {
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++) cin >> a[i];
//    sort(a + 1, a + 1 + n);
    for (int i = 1; i <= n; i++) {
        for (int j = i + 1; j <= n; j++) {
            int sum = a[i] + a[j];
            if (vis[sum]) {
                if (i != ans[sum].first && j != ans[sum].second && i != ans[sum].second && j != ans[sum].first) {
                    cout << "YES" << ENDL;
                    cout << i << " " << j << " " << ans[sum].first << " " << ans[sum].second << ENDL;
                    return 0;
                }
            } else {
                vis[sum] = 1;
                ans[sum] = {i, j};
            }
        }
    }
    cout << "NO" << ENDL;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值