应变和应力

本文介绍了应力和应变的基本概念,包括垂直应力、剪切应力、轴向应变和横向应变。应力是单位截面积上的内力,而应变则是物体在外力作用下产生的变形率。通过杨氏模量和胡克定律,阐述了两者之间的线性关系,并指出在一定范围内应力与应变成正比。此外,讨论了材料的泊松比及其在弹性模量中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应力”简单地可概括为单位截面积上的内力单位为Pa帕斯卡或N/m2。

例如圆柱体截面积为A(m2),所受外力为P(N牛顿)由外力=内力可得应力:

σ=P/A(Pa或者N/m2)

这里的截面积A与外力的方向垂直所以得到的应力叫做垂直应力。

剪切应力,物体由于外因(载荷、温度变化等)而变形时,在它内部任一 截面 (剪切面)的两方出现的 相互作用力 ,称为“内力”。 内力的集度,即单位面积上受到的内力称为“应力”。 

应变当单位圆柱体被拉伸的时候会产生伸长变形ΔL那么圆柱体的长度则变为L+ΔL。这里由伸长量ΔL和原长L的比值所表示的伸长率或压缩率就叫做“应变”记为ε

ε=△L/L

与外力同方向的伸长(或压缩)方向上的应变称为“轴向应变”。应变表示的是伸长率或压缩率属于无量纲数没有单位。由于量值很小(1×10-6百万分之一)通常单位用“微应变”表示或简单地用μE表示。而单位圆柱体在被拉伸的状态下变长的同时也会变细。直径为d0的棒产生Δd的变形时直径方向的应变如下式所示

ε2=-△d/d0

这种与外力成直角方向上的应变称为“横向应变”。


每种材料都有其固定的泊松比且大部分材料的泊松比都在0.3左右。


杨氏模量:杨氏模量,它是沿纵向的弹性模量,也是材料力学中的名词。

应力与应变的关系根据胡克定律在一定的比例极限范围内应力与应变成线性比例关系。对应的最大应力称为比例极限。

应力与应变的比例常数E 被称为弹性系数或扬氏模量不同的材料有其固定的扬氏模量。综上所述虽然无法对应力进行直接的测量但是通过测量由外力影响产生的应变可以计算出应力的大小。

当你想对一个长条状试件进行模拟拉伸测试,你需要遵循以下步骤: 1. **几何建模**: 首先,你需要离散化或网格化试件,这通常通过划分成多个线性元素(如杆件单元)完成,每个单元对应于模型中的一个小段。你可以使用MATLAB的`pdeGriddata`、`mesh` 或 `rectilinearMesh` 函数。 2. **定义物理属性**: 每个单元需要有材料属性,比如弹性模量(E)、泊松比(ν),以及可能的质量密度(ρ)。这些属性会影响刚度矩阵质量矩阵的构建。 3. **创建质量矩阵刚度矩阵**: 使用单元的长度、截面积等信息,根据材料性质计算出每个单元的局部质量矩阵(用以存储节点的质量)刚度矩阵(描述单元间的力变形关系)。MATLAB提供了内置函数如`assembleK` `assembleM` 来帮助组装这些矩阵。 4. **离散化的运动方程**: 对于显式时间积分方法(例如欧拉法、龙格-库塔法等),你可以按照以下公式更新位移(u)速度(v): ``` v(t+dt) = v(t) + dt * (F/m); u(t+dt) = u(t) + dt * v(t+dt); ``` 其中 F 是作用在节点上的外力,m 是节点的质量,dt 是时间步长。 5. **求解**: 在每个时间步长内,应用刚度矩阵质量矩阵来求解新的位移状态。可以使用 MATLAB 的 `sparse` `solve` 函数来完成这个过程。 6. **计算应变应力**: 根据位移梯度(通常是通过雅可比矩阵J计算得出)来得到应变应力则可以通过材料的本构关系(如胡克定律)计算,对于线性弹性材料,为 E*ε,其中 ε 是应变。 7. **数据记录绘图**: 记录每个时间步长的位移对应的应力-应变值,然后使用MATLAB的 `plot` 函数绘制位移随长度的变化曲线(X轴可能是位置,Y轴是位移)应力-应变曲线(X轴是应变,Y轴是应力)。 8. **循环迭代**: 进行多次迭代直到达到预设的终止条件,如达到最大位移或达到预设的时间点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值